A major goal of neuroscience, statistical physics and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally we show that the firing rate description is related, via a conformal map, with a lowdimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.Processing and coding of information in the brain necessarily imply the coordinated activity of large ensembles of neurons. Within sensory regions of the cortex, many cells show similar responses to a given stimulus, indicating a high degree of neuronal redundancy at the local level. This suggests that information is encoded in the population response and hence can be captured via macroscopic measures of the network activity [1]. Moreover, the collective behavior of large neuronal networks is particularly relevant given that current brain measurement techniques, such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI), provide data which is necessarily averaged over the activity of a large number of neurons.The macroscopic dynamics of neuronal ensembles has been extensively studied through computational models of large networks of recurrently coupled spiking neurons, including Hodgkin-Huxley-type conductance-based neurons [2] as well as simplified neuron models, see e.g. [3][4][5]. In parallel, researchers have sought to develop statistical descriptions of neuronal networks, mainly in terms of a macroscopic observable that measures the mean rate at which neurons emit spikes, the firing rate [6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22]. These descriptions, called firing-rate equations (FREs), have ...
In the Kuramoto model, a uniform distribution of the natural frequencies leads to a first-order (i.e., discontinuous) phase transition from incoherence to synchronization, at the critical coupling parameter Kc. We obtain the asymptotic dependence of the order parameter above criticality: r − rc ∝ (K − Kc) 2/3 . For a finite population, we demonstrate that the population size N may be included into a self-consistency equation relating r and K in the synchronized state. We analyze the convergence to the thermodynamic limit of two alternative schemes to set the natural frequencies. Other frequency distributions different from the uniform one are also considered.
Large communities of biological oscillators show a prevalent tendency to self-organize in time. This cooperative phenomenon inspired Winfree to formulate a mathematical model that originated the theory of macroscopic synchronization. Despite its fundamental importance, a complete mathematical analysis of the model proposed by Winfree -consisting of a large population of all-to-all pulse-coupled oscillators-is still missing. Here we show that the dynamics of the Winfree model evolves into the so-called Ott-Antonsen manifold. This important property allows for an exact description of this high-dimensional system in terms of a few macroscopic variables, and the full investigation of its dynamics. We find that brief pulses are capable of synchronizing heterogeneous ensembles which fail to synchronize with broad pulses, specially for certain phase response curves. Finally, to further illustrate the potential of our results, we investigate the possibility of 'chimera' states in populations of identical pulse-coupled oscillators. Chimeras are self-organized states in which the symmetry of a population is broken into a synchronous and an asynchronous part. Here we derive three ordinary differential equations describing two coupled populations, and uncover a variety of chimera states, including a new class with chaotic dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.