Human behavior is predictable in principle: people are systematic in their everyday choices. This predictability can be used to plan events and infrastructure, both for the public good and for private gains. In this paper we investigate the largely unexplored relationship between the systematic behavior of a customer and its profitability for a retail company. We estimate a customer's behavioral entropy over two dimensions: the basket entropy is the variety of what customers buy, and the spatio-temporal entropy is the spatial and temporal variety of their shopping sessions. To estimate the basket and the spatio-temporal entropy we use data mining and information theoretic techniques. We find that predictable systematic customers are more profitable for a supermarket: their average per capita expenditures are higher than non systematic customers and they visit the shops more often. However, this higher individual profitability is masked by its overall level. The highly systematic customers are a minority of the customer set. As a consequence, the total amount of revenues they generate is small. We suggest that favoring a systematic behavior in their customers might be a good strategy for supermarkets to increase revenue. These results are based on data coming from a large Italian supermarket chain, including more than 50 thousand customers visiting 23 shops to purchase more than 80 thousand distinct products
Aim of this paper is to introduce the complex system perspective into retail market analysis. Currently, to understand the retail market means to search for local patterns at the micro level, involving the segmentation, separation and profiling of diverse groups of consumers. In other contexts, however, markets are modelled as complex systems. Such strategy is able to uncover emerging regularities and patterns that make markets more predictable, e.g. enabling to predict how much a country's GDP will grow. Rather than isolate actors in homogeneous groups, this strategy requires to consider the system as a whole, as the emerging pattern can be detected only as a result of the interaction between its self-organizing parts. This assumption holds also in the retail market: each customer can be seen as an independent unit maximizing its own utility function. As a consequence, the global behaviour of the retail market naturally emerges, enabling a novel description of its properties, complementary to the local pattern approach. Such task demands for a data-driven empirical framework. In this paper, we analyse a unique transaction database, recording the micro-purchases of a million customers observed for several years in the stores of a national supermarket chain. We show the emergence of the fundamental pattern of this complex system, connecting the products' volumes of sales with the customers' volumes of purchases. This pattern has a number of applications. We provide three of them. By enabling us to evaluate the sophistication of needs that a customer has and a product satisfies, this pattern has been applied to the task of uncovering the hierarchy of needs of the customers, providing a hint about what is the next product a customer could be interested in buying and predicting in which shop she is likely to go to buy it.
In our market society, buyers are considered rational entities, driven by two utility functions: i) the amount of money spent, a universal quantity to be minimized; and ii) the individual needs to satisfy, a personal quantity, varying from person to person, to be maximized. In this paper, we propose an analytic framework based on big data to measure the personal utility function and we prove that this function has a stronger effect on customer behavior than the price. By focusing on the purchases in an Italian supermarket chain, we discover and describe a range effect of products: the more sophisticated the needs they satisfy, the more cost the customers are willing to pay to buy them, in terms of distance to travel more than in terms of the price of the item itself. We exhibit a striking empirical evidence of this theory by tracking the geographical information about points of sale and customers, in a large dataset containing tens of thousands of customers and thousands of products. We create a data mining framework able to scale to possibly hundreds of thousands, or millions, of customers and to let emerge from the data the knowledge about the actual range of each product. As an application of this finding, we show how it is possible to accurately predict how long a customer will travel (or which shop she will choose) to buy a product, as a function of the product's sophistication.
In recent years we witnessed the explosion in the availability of data regarding human and customer behavior in the market. This data richness era has fostered the development of useful applications in understanding how markets and the minds of the customers work. In this paper we focus on the analysis of complex networks based on customer behavior. Complex network analysis has provided a new and wide toolbox for the classic data mining task of clustering. With community discovery, i.e. the detection of functional modules in complex networks, we are now able to group together customers and products using a variety of different criteria. The aim of this paper is to explore this new analytic degree of freedom. We are interested in providing a case study uncovering the meaning of different community discovery algorithms on a network of products connected together because co-purchased by the same customers. We focus our interest in the different interpretation of a partition approach, where each product belongs to a single community, against an overlapping approach, where each product can belong to multiple communities. We found that the former is useful to improve the marketing classification of products, while the latter is able to create a collection of different customer profiles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.