General Video Game Playing (GVGP) aims at designing an agent that is capable of playing multiple video games with no human intervention. In 2014, The General Video Game AI (GVGAI) competition framework was created and released with the purpose of providing researchers a common open-source and easy to use platform for testing their AI methods with potentially infinity of games created using Video Game Description Language (VGDL). The framework has been expanded into several tracks during the last few years to meet the demand of different research directions. The agents are required either to play multiple unknown games with or without access to game simulations, or to design new game levels or rules. This survey paper presents the VGDL, the GVGAI framework, existing tracks, and reviews the wide use of GVGAI framework in research, education and competitions five years after its birth. A future plan of framework improvements is also described.
Abstract-This paper presents the framework, rules, games, controllers and results of the first General Video Game Playing Competition, held at the IEEE Conference on Computational Intelligence and Games in 2014. The competition proposes the challenge of creating controllers for general video game play, where a single agent must be able to play many different games, some of them unknown to the participants at the time of submitting their entries. This test can be seen as an approximation of General Artificial Intelligence, as the amount of game-dependent heuristics needs to be severely limited.The games employed are stochastic real-time scenarios (where the time budget to provide the next action is measured in milliseconds) with different winning conditions, scoring mechanisms, sprite types and available actions for the player. It is a responsibility of the agents to discover the mechanics of each game, the requirements to obtain a high score and the requisites to finally achieve victory. This paper describes all controllers submitted to the competition, with an in-depth description of four of them by their authors, including the winner and the runner-up entries of the contest. The paper also analyzes the performance of the different approaches submitted, and finally proposes future tracks for the competition.
This paper presents a framework and an initial study in general video game level generation, the problem of generating levels for not only a single game but for any game within a specified domain. While existing level generators are tailored to a particular game, this new challenge requires generators to take into account the constraints and affordances of games that might not even have been designed when the generator was constructed. The framework presented here builds on the General Video Game AI framework (GVG-AI) and the Video Game Description Language (VGDL), in order to reap synergies from research activities connected to the General Video Game Playing Competition. The framework will also form the basis for a new track of this competition. In addition to the framework, the paper presents three general level generators and an empirical comparison of their qualities.
Agent modelling involves considering how other agents will behave, in order to influence your own actions. In this paper, we explore the use of agent modelling in the hiddeninformation, collaborative card game Hanabi. We implement a number of rule-based agents, both from the literature and of our own devising, in addition to an Information Set-Monte Carlo Tree Search (IS-MCTS) agent. We observe poor results from IS-MCTS, so construct a new, predictor version that uses a model of the agents with which it is paired. We observe a significant improvement in game-playing strength from this agent in comparison to IS-MCTS, resulting from its consideration of what the other agents in a game would do. In addition, we create a flawed rule-based agent to highlight the predictor's capabilities with such an agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.