The mining industry of the last few decades recognizes that it is more profitable to simulate model using historical data and available mining process knowledge rather than draw conclusions regarding future mine exploitation based on certain conditions. The variability of the composition of copper leach piles makes it unlikely to obtain high precision simulations using traditional statistical methods; however the same data collection favors the use of softcomputing techniques to enhance the accuracy of copper recovery via leaching by way of prediction models. In this paper, a predictive modeling contrasting is made; a linear model, a quadratic model, a cubic model, and a model based on the use of an artificial neural network (ANN) are presented. The model entries were obtained from operation data and data of piloting in columns. The ANN was constructed with 9 input variables, 6 hidden layers, and a neuron in the output layer corresponding to copper leaching prediction. The validation of the models was performed with real information and these results were used by a mining company in northern Chile to improve copper mining processes.
This document presents a proposal for designing an expert system in the Gabriela Mistral Division’s crushing plant belonging to Codelco (Chile) with the objective of maximizing stacked tonnage, allowing the improvement of operational variables that directly interact with the crushing process. In addition, this study considers the impact that occurs in both the process and operational continuity regarding the standardization of the system. In the first stage, a survey and analysis of historic operation data was carried out, which allowed the definition of benchmarking indicators. Subsequently, both modalities of operation were compared, monitoring processed tonnage and detentions related to operational failures. As a result, significant differences were observed in the performance of the critical line operating with expert control, with a 55% reduction in the detentions referred to operational failures. Added to this is the benefit of low cost and improved quality as the control provides an analysis of the variables in reduced time intervals, which is superior to human control.
For centuries, Chile has been a territory with significant mining activity, resulting in associated social benefits and impacts. One of the main challenges the country faces today is the presence of a great number of mine tailings containing heavy metals, such as Cu, Cr, Ni, Zn, Pb, As, Cd, and Fe, which make up a potential risk for the population. This study is intended to develop a methodology for determining tailings requiring urgent treatment in Chile, based on risks associated with heavy metals. Geochemical data from 530 Chilean tailings were compared to the Dutch norm and the Canadian and Australian soil quality guidelines for residential use. Additionally, criteria about residents and water bodies were used, considering a 2-km area of influence around tailings. To do this, QGIS (Böschacherstrasse 10a CH-8624 Grüt (Gossau ZH), Zurich, Switzerland), a geospatial tool, was used to geolocate each deposit, considering regions, communes, rivers, lakes, and populated areas. To evaluate potential ecological contamination risks, Hakanson’s methodology was used. Results revealed the presence of 12 critical tailings in Chile that require urgent treatment. From the 530 tailings evaluated, 195 are located at less than 2 km from a populated area and 154 at less than 2 km from a water body. In addition, 347 deposits require intervention: 30 on Cu, 30 on Cr, 13 on Zn, 69 on Pb, 138 on As, 1 on Cd, and 5 on Hg.
The method used to extract copper from its ores depends on the nature of the ore. The main process currently to separate copper from sulphide ores is the smelting process. The concentrated ore is heated strongly with silicon dioxide (silica), calcium carbonate and oxygen enriched air in a furnace or series of furnaces which is carried out using the injection of the air for oxidation the Fe and Si present in the raw material. Oxygen can be produced using several different methods. One of these methods is Air separation process, which separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases by cryogenic distillation. In this paper, simulation of air separation units (ASUs) was studied using Aspen Hysys®. The obtained simulation and model was validated with the operational data from the Oxinor I of Air Liquide S.A Plant. The ASU was divided into subsystems to perform the simulations. Each subsystem was validated separately and later on integrated into a single simulation. An absolute error of 1% and 1.5% was achieved between the simulated and observed the process variables(s). This indicated that Aspen Hysys® has the thermodynamic packages and required tools to perform simulations in cryogenic processes at industrial scale.
BackgroundWorldwide, hydrogen is being regarded as a fuel of the future due to its abundance and the byproducts generated by its combustion. However, mass production of hydrogen gas is a problem complex, since it entails large energy costs. In this work, three prototypes, based on standard and low cost materials, for the production of hydrogen were used, varying the way of generating hydrogen by electrolysis and the way of using the hydrogen produced, either by storing it or to be use in burners in kitchen.ResultsIt was found that the operating temperatures oscillate between 60 to 90 degrees Celsius. The system of rectangular plates with bipolar dry cell electrolyzer obtained a H2 generation of 0.1 m3/hr with an energy consumption of 553.6 [kW/m3 H2] operating at 2 [atm], on the other hand, the unipolar collector with points generated 0.02 m3/hr 20/60 standard liters per H2 with a consumption of 144 [kW/m3] operating at 1 [atm] this was the most efficient device with a 26 % efficiency considering the solar energy used.ConclusionA low cost prototype was created which allows the use of solar energy, allowing the energy storage in the form of H2. It can be used in a rural area to be injected in kitchen burners, reducing LPG (liquefied petroleoum gas) consumptions and contributing to the sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.