Water contamination around the world is an increasing problem due to the presence of contaminants such as arsenic, fluoride, and chromium. The presence of such contaminants is related to either natural or anthropogenic processes. The above-mentioned problem has motivated the search for strategies to explore and develop technologies to remove these contaminants in water. Adsorption is a common process employed for such proposals due to its versatility, high adsorption capacity, and lower cost. In particular, graphene oxide is a material that is of special interest due to its physical and chemical properties such as surface area, porosity, pore size as well as removal efficiency for several contaminants. This review shows the advances, development, and perspectives of materials based on GO employed for the adsorption of contaminants such as arsenite, arsenate, fluoride, and hexavalent chromium. We provided a detailed discussion of the synthesis techniques and their relationship with the adsorption capacities and other physical properties as well as pH ranges employed to remove the contaminants. It is concluded that the adsorption capacity is not proportional to the surface area in all the cases; instead, the synthesis method, as well as the functional groups, play an important role. In particular, the sol–gel synthesis method shows better adsorption capacities.
Soil compaction causes negative effects on crop yield and its mechanical response analysis has recently gained relevance for research through numerical methods. In this work, Finite Element Method (FEM) using the Mohr-Coulomb (MC) and Hardening Soil (HS) constitutive models were employed to simulate the mechanical response of a Vertisol agricultural soil. First, an experimental study of the unconsolidated-undrained (UU) triaxial compression test with different moisture contents (w = 10%, 20% and 34%) and confining pressures (σ3 = σc = 0.05 MPa, 0.10 MPa and 0.15 MPa) was carried out, to obtain the shear strength parameters cohesion (c) and friction angle (φ), as well as the Young's modulus (E) of the soil. The experimental study was conducted through a 3 2 factorial design with three replicates that it was used to evaluate the influence of the w and σc on E of the studied soil. Also, an analysis of the behavior of the φ and c parameters at each w was performed. Numerical simulations were done with similar conditions as the experimental tests with respect to loading and boundary conditions. A comparison of the mechanical response between numerical results and physical experiments was carried out. As a result, the MC model allowed to estimate satisfactorily the stress-strain relationship of the soil for w of 10% and 20%, while HS model exhibited a better approximation for w of 34% in comparison with the MC model. Finally, the methodology and the adjusted parameters of the agricultural soil obtained in this work, can be used in the study of soil compaction produced by the agricultural machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.