Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Reservoir fluids are multicomponent mixtures in confined spaces, where the role of capillary force becomes important when the average pore size is on the order of tens of nanometers, such as in tight rocks and shale. We present an algorithm for calculating the phase envelope of multicomponent mixtures in the presence of capillary pressure. The algorithm uses a rigorous equation of state (EoS) model, such as the Soave-Redlich-Kwong EoS, for phase equilibrium, and the Young-Lapace equation for the capillary pressure. The interfacial tension is calculated using a parachor based model. A full Newton method is employed to solve the governing equations of the vapor-liquid equilibria coupled with the capillary pressure equation. For a stable and automatic construction of the phase envelope sensitivity analysis is used in each step. The developed algorithm can reliably generate not just the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation pressures in the whole phase envelope except at the critical point. The bubble point curve shows a negative change while the dew point curve shows positive and negative changes in the upper dew point branch and the lower dew point branch, respectively. In particular, the cricondentherm is also shifted towards a higher temperature. The change in the phase envelope becomes larger as the pore size decreases. The effects of composition and gas oil ratios are also discussed.
SPE-197278-MS PVT tool for analyzing shale production. It can be used to infer what the initial fluid composition is in the shale reservoir, and to analyze how capillary pressure and adsorption influence shale production during a depletion procedure. Furthermore, the tool also allows a more advanced analysis for gas injection in shale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.