The notion that climate change will generally increase human and wildlife diseases has garnered considerable public attention, but remains controversial and seems inconsistent with the expectation that climate change will also cause parasite extinctions. In this review, we highlight the frontiers in climate change–infectious disease research by reviewing knowledge gaps that make this controversy difficult to resolve. We suggest that forecasts of climate-change impacts on disease can be improved by more interdisciplinary collaborations, better linking of data and models, addressing confounding variables and context dependencies, and applying metabolic theory to host–parasite systems with consideration of community-level interactions and functional traits. Finally, although we emphasize host–parasite interactions, we also highlight the applicability of these points to climate-change effects on species interactions in general.
BackgroundMosquito biting frequency and how bites are distributed among different people can have significant epidemiologic effects. An improved understanding of mosquito vector-human interactions would refine knowledge of the entomological processes supporting pathogen transmission and could reveal targets for minimizing risk and breaking pathogen transmission cycles.Methodology and principal findingsWe used human DNA blood meal profiling of the dengue virus (DENV) vector, Aedes aegypti, to quantify its contact with human hosts and to infer epidemiologic implications of its blood feeding behavior. We determined the number of different people bitten, biting frequency by host age, size, mosquito age, and the number of times each person was bitten. Of 3,677 engorged mosquitoes collected and 1,186 complete DNA profiles, only 420 meals matched people from the study area, indicating that Ae. aegypti feed on people moving transiently through communities to conduct daily business. 10–13% of engorged mosquitoes fed on more than one person. No biting rate differences were detected between high- and low-dengue transmission seasons. We estimate that 43–46% of engorged mosquitoes bit more than one person within each gonotrophic cycle. Most multiple meals were from residents of the mosquito collection house or neighbors. People ≤25 years old were bitten less often than older people. Some hosts were fed on frequently, with three hosts bitten nine times. Interaction networks for mosquitoes and humans revealed biologically significant blood feeding hotspots, including community marketplaces.Conclusion and significanceHigh multiple-feeding rates and feeding on community visitors are likely important features in the efficient transmission and rapid spread of DENV. These results help explain why reducing vector populations alone is difficult for dengue prevention and support the argument for additional studies of mosquito feeding behavior, which when integrated with a greater understanding of human behavior will refine estimates of risk and strategies for dengue control.
Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.
Chikungunya is a mosquito-borne viral infection of humans that previously was confined to regions in central Africa. However, during this century, the virus has shown surprising potential for geographic expansion as it invaded other countries including more temperate regions. With no vaccine and no specific treatment, the main control strategy for Chikungunya remains preventive control of mosquito populations. In consideration for the risk of Chikungunya introduction to the US, we developed a model for disease introduction based on virus introduction by one individual. Our study combines a climate-based mosquito population dynamics stochastic model with an epidemiological model to identify temporal windows that have epidemic risk. We ran this model with temperature data from different locations to study the geographic sensitivity of epidemic potential. We found that in locations with marked seasonal variation in temperature there also was a season of epidemic risk matching the period of the year in which mosquito populations survive and grow. In these locations controlling mosquito population sizes might be an efficient strategy. But, in other locations where the temperature supports mosquito development all year the epidemic risk is high and (practically) constant. In these locations, mosquito population control alone might not be an efficient disease control strategy and other approaches should be implemented to complement it. Our results strongly suggest that, in the event of an introduction and establishment of Chikungunya in the US, endemic and epidemic regions would emerge initially, primarily defined by environmental factors controlling annual mosquito population cycles. These regions should be identified to plan different intervention measures. In addition, reducing vector: human ratios can lower the probability and magnitude of outbreaks for regions with strong seasonal temperature patterns. This is the first model to consider Chikungunya risk in the US and can be applied to other vector borne diseases.
The seasonality of cholera and its spatial variability remain unexplained. Uncovering the role of environmental drivers in these seasonal patterns is critical to understand temporal variability at longer time scales, including trends and interannual variability. Rainfall has been proposed as a key driver of the seasonality of cholera. To address this hypothesis, we examine the association between rainfall and cholera in both time and space using the extensive historical records for the districts of Madras in former British India .We show the existence of two main spatial clusters that differ not just in the effect of rainfall but also in the seasonal pattern and frequency of periods with and without cholera mortality. The results support a model of cholera seasonality with two different routes of transmission: one is enhanced by increasing rainfall (in areas with abundant water), the other is buffered by increasing water. We discuss how the dual nature of the influence of rainfall creates different temporal patterns in regions where cholera is either ''endemic'' or ''epidemic.''
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.