Metaheuristics are gaining increasing recognition in many research areas, computational systems biology among them. Recent advances in metaheuristics can be helpful in locating the vicinity of the global solution in reasonable computation times, with Differential Evolution (DE) being one of the most popular methods. However, for most realistic applications, DE still requires excessive computation times. With the advent of Cloud Computing effortless access to large number of distributed resources has become more feasible, and new distributed frameworks, like Spark, have been developed to deal with large scale computations on commodity clusters and cloud resources. In this paper we propose a parallel implementation of an enhanced DE using Spark. The proposal drastically reduces the execution time, by means of including a selected local search and exploiting the available distributed resources. The performance of the proposal has been thoroughly assessed using challenging parameter estimation problems from the domain of computational systems biology. Two different platforms have been used for the evaluation, a local cluster and the Microsoft Azure public cloud. Additionally, it has been also compared with other parallel approaches, another cloudbased solution (a MapReduce implementation) and a traditional HPC solution (a MPI implementation).
Metaheuristics are gaining increased attention as an efficient way of solving hard global optimization problems. Differential Evolution (DE) is one of the most popular algorithms in that class. However, its application to realistic problems results in excessive computation times. Therefore, several parallel DE schemes have been proposed, most of them focused on traditional parallel programming interfaces and infrastructures. However, with the emergence of Cloud Computing, new programming models, like Spark, have appeared to suit with large-scale data processing on clouds. In this paper we investigate the applicability of Spark to develop parallel DE schemes to be executed in a distributed environment. Both the master-slave and the island-based DE schemes usually found in the literature have been implemented using Spark. The speedup and efficiency of all the implementations were evaluated on the Amazon Web Services (AWS) public cloud, concluding that the islandbased solution is the best suited to the distributed nature of Spark. It achieves a good speedup versus the serial implementation, and shows a decent scalability when the number of nodes grows.
Abstract. Global optimization problems arise in many areas of science and engineering, computational and systems biology and bioinformatics among them. Many research efforts have focused on developing parallel metaheuristics to solve them in reasonable computation times. Recently, new programming models are being proposed to deal with large scale computations on commodity clusters and Cloud resources. In this paper we investigate how parallel metaheuristics deal with these new models by the parallelization of the popular Differential Evolution algorithm using MapReduce and Spark. The performance evaluation has been carried out both in a local cluster and in the Amazon Web Services public cloud. The results obtained can be particularly useful for those interested in the potential of new Cloud programming models for parallel metaheuristic methods in general and Differential Evolution in particular.
Systems biology is an emerging approach focused in generating new knowledge about complex biological systems by combining experimental data with mathematical modeling and advanced computational techniques. Many problems in this field are extremely challenging and require substantial supercomputing resources to be solved. This is the case of parameter estimation in large-scale nonlinear dynamic systems biology models. Recently, Cloud Computing has emerged as a new paradigm for on-demand delivery of computing resources. However, scientific computing community has been quite hesitant in using the Cloud, simply because traditional programming models do not fit well with the new paradigm, and the earliest cloud programming models do not allow most scientific computations being efficiently run in the Cloud. In this paper we explore and compare two distributed computing models: the MPI (message-passing interface) model, that is high-performance oriented, and the Spark model, which is throughput oriented but outperforms other cloud programming solutions adding improved support for iterative algorithms through in-memory computing. The performance of a very well known metaheuristic, the Differential Evolution algorithm, has been thoroughly assessed using a challenging parameter estimation problem from the domain of computational systems biology. The experiments have been carried out both in a local cluster and in the Microsoft Azure public cloud, allowing performance and cost evaluation for both infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.