Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant-plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non-aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral-nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.
Diaspore (e.g. seeds, fruits) dispersal is pivotal for plant communities and often involves several steps and different dispersing agents. Most studies focusing on diaspore dispersal by animals have highlighted the role of vertebrates, neglecting the role of ants in the diaspore dispersal of non‐myrmecochorous plants. Diaspore dispersal by ants is especially relevant in the current scenario of declining of vertebrate populations and, consequently, collapse of the dispersal system of large‐seeded plants. Although ants can never compensate for the dispersal service provided by vertebrates, they can mitigate the impact of vertebrate decline via removal of diaspores deposited on the ground. We have used a meta‐analytical approach to investigate the contribution of ants in the removal of non‐myrmecochorous diaspores (through vertebrate exclusion experiments). We considered the number of diaspore removal as effect size and factors such as plant growth forms, diaspore and ant size, habitat type as moderators. In addition, we investigated the role of such factors on the diaspore removal distance by ants. Ants played complementary role to non‐myrmecochorous diaspore removal services provided by vertebrates (mean Hedges’ g of −0.30). The ant diaspore removal was 69% higher for diaspores from shrubs than that of tree diaspores and removal of small‐sized diaspores were 69% and 70% higher in comparison to medium‐ and large‐sized diaspores, respectively. Regarding the diaspore removal distance by ants, those of tree species were removed 32% farther than those of shrub species, and diaspores were removed three‐ times farther in the savanna than in rainforest ecosystems. Our results highlight the shrubs and small‐sized diaspores. Regarding the diaspore removal distance, the ants can be crucial for the dispersal of tree diaspores and in the savanna ecosystems. Finally, considering the biodiversity crisis, the ants may play an even more important role than appreciated in diaspores dispersal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.