GM1 ganglioside (II NeuAc-Gg Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II NeuAc-Gg rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV αFucII Neu5Ac-Gg ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-nerve growth factor complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-nerve growth factor molecular interactions.
Given the recent in vitro discovery that the free soluble oligosaccharide of GM1 is the bioactive portion of GM1 for neurotrophic functions, we investigated its therapeutic potential in the B4galnt1+/− mice, a model of sporadic Parkinson’s disease. We found that the GM1 oligosaccharide, systemically administered, reaches the brain and completely rescues the physical symptoms, reduces the abnormal nigral α-synuclein content, restores nigral tyrosine hydroxylase expression and striatal neurotransmitter levels, overlapping the wild-type condition. Thus, this study supports the idea that the Parkinson’s phenotype expressed by the B4galnt1+/− mice is due to a reduced level of neuronal ganglioside content and lack of interactions between the oligosaccharide portion of GM1 with specific membrane proteins. It also points to the therapeutic potential of the GM1 oligosaccharide for treatment of sporadic Parkinson’s disease.
Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA–GM1 oligosaccharide complex at the cell surface. To study the TrkA–GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross‐linked TrkA–GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA–GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent‐resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by ‘flopping’ down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.