With the growing population and the adverse effects of climate change, the pressure on coastal aquifers is increasing, leading to a larger risk of saltwater intrusion (SI). SI is often complex and difficult to characterize from well data only. In this context, electrical resistivity tomography (ERT) can provide high-resolution qualitative information on the lateral and vertical distribution of salinity. However, the quantitative interpretation of ERT remains difficult because of the uncertainty of petrophysical relationships, the limitations of inversion, and the heterogeneity of aquifers. In this contribution, we propose a methodology for the semiquantitative interpretation of ERT when colocated well data are not available. We first use existing wells to identify freshwater zones and characterize the resistivity response of clayey deposits. Then, we approximate the formation factor from water samples collected in the vicinity of ERT data to derive a resistivity threshold to interpret the saline boundary. We applied the methodology in the shallow aquifers of the Luy River in the Binh Thuan province, Vietnam, where water resources are under pressure due to agricultural, aquacultural, and industrial production. Twenty-one ERT profiles were collected and revealed a much larger intrusion zone, compared to the previous study. Saltwater is present in lowland areas of the left bank over almost the whole thickness of the aquifer, while the right bank is constituted of sand dunes that are filled with freshwater. At a larger distance from the sea, a complex distribution between fresh and saltwater is observed. Our methodology could be applied to other heterogeneous aquifers in the absence of a dense monitoring network.
The Vietnamese Binh Thuan province located along the Southern Central part of the coast is one of the driest in the country. The population is relying largely on groundwater for irrigation, and the groundwater resources are threatened by climate change and saltwater intrusion in river estuaries. Recent studies, however, reveal that the extension of saltwater intrusions was larger than expected, raising some doubts on the actual origin of the intrusions. In this study, we use the geochemical characterization of groundwater samples collected in both the dry and rainy seasons in the Luy river coastal area to identify hydrochemical processes responsible for the salinization and variations taking place in the shallow aquifers. The distribution of chemical components of groundwater and the indicators presenting the freshening and salinization processes, such as cation exchange code and chloride conservative element, the ionic delta, the HFE-diagram, and geochemical modelling, were studied. The results show that 65% of the samples exceed the WHO limit for drinking water and 100% of them have a degree of restriction on use from slight–moderate to severe in potential irrigation problems according to FAO. In contrast to previous expectations, freshening is the dominant process in the aquifers, and it is more advanced in the rainy season. Due to a lack of recharge and aquifer exploitation, salinization is more severe in the deeper aquifer and during the dry season. Saltwater intrusion is not limited to the zone close to the river but extends further inland and at depth, and salinity can vary quickly over short distances. Based on these new insights, we develop a new conceptual model for the evolution of salinization in the Luy river catchment involving a natural freshening process of connate water combined with anthropic influence. The conceptual model will form the basis for the development of a groundwater model of the study area and eventually lead to sustainable management scenarios for this coastal region, preventing further deterioration of the groundwater resources.
<p><strong>Imaging the extent of salt water intrusion in the Luy river coastal aquifer (Binh Thuan) using electrical resistivity tomography (ERT)</strong></p><p>Diep Cong-Thi<sup>1,3</sup>, Linh Pham Dieu<sup>1,3</sup>, Robin Thibaut<sup>1</sup>, Marieke Paepen<sup>1</sup>, Hieu Huu Ho<sup>3</sup>,</p><p>Fr&#233;d&#233;ric Nguyen<sup>2</sup>, Thomas Hermans<sup>1</sup></p><p><sup>&#160;</sup></p><p><sup>1</sup>Department of Geology,<sup></sup>Ghent University, 9000-Gent, Belgium</p><p><sup>2 </sup>Department of Urban and Environmental Engineering,<sup></sup>Liege University and Department of Civil Engineering, KU Leuven, B- 4000 Li&#232;ge and 3000 Leuven, Belgium</p><p><sup>3 </sup>Department of Marine Geology, Vietnam Institute of Geosciences and Mineral Resources (VIGMR), 100000 Hanoi, Vietnam</p><p>&#160; ABSTRACT</p><p>Seawater intrusion has been one of the most concerning issues of the Vietnam South Central provinces in recent years, especially in the Binh Thuan province which is characterized by a hyper-arid climate. During the dry season extending from November to April, seawater intrudes through estuaries and threatens groundwater resources. The latter are under increasing pressure due to water extraction for agri- and aquaculture. To evaluate the current state of salinity in the shallow coastal aquifer, 21 electrical resistivity tomography (ERT) measurements were collected along the downstream part of the Luy river based on the previous saltwater intrusion boundary which was estimated from water samples collected from shallow boreholes. The data were inverted to get the resistivity distribution of the subsurface and interpreted in terms of salinity. Comparison with well data shows that resistivity values below 6.5 Ohm.m correspond to the presence of saltwater in the aquifers. On the right bank of the river, a higher elevation dune area contains a freshwater aquifer which limits the intrusion of saltwater. On the left bank dominated by lowland areas, saline water fills almost the entire thickness of the aquifer, except locally for small thin freshwater lenses. At larger distances from the sea, the aquifer displays a complex distribution of fresh and saline lenses. Those variations seem to be correlated with the presence of clay lenses, recharge sources and irrigation practices. ERT data also reveals the depth of the rock basement. The geophysical observations show that the extension of saltwater intrusion is much larger and more complex than expected from existing borehole data and is not limited to interaction with the river.</p><p>KEYWORDS: saltwater intrusion, groundwater, electrical resistivity tomography, Luy river. <sup>&#160;</sup></p><p>*Corresponding Authors. Email: Diep.CongThi@UGent.be; Linh.PhamDieu@Ugent.be; robin.thibaut@ugent.be; marieke.paepen@ugent.be; hohuuhieu@yahoo.com; f.nguyen@uliege.be; thomas.hermans@ugent.be</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.