In this work, we propose a new learning-based iterative control (IC) framework that enables a complex softrobotic arm to track trajectories accurately. Compared to traditional iterative learning control (ILC), which operates on a single fixed reference trajectory, we use a deep learning approach to generalize across various reference trajectories. The resulting nonlinear mapping computes feedforward actions and is used in a two degrees of freedom control design. Our method incorporates prior knowledge about the system dynamics and by learning only feedforward actions, it mitigates the risk of instability. We demonstrate a low sample complexity and an excellent tracking performance in real-world experiments. The experiments are carried out on a custom-made robot arm with four degrees of freedom that is actuated with pneumatic artificial muscles. The experiments include high acceleration and high velocity motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.