The oral and maxillofacial region has a complex regional anatomy including hard and soft tissues. Trauma in this region may affect the airway, cause potentially life threatening bleeding and head injuries. The senses of olfaction, sight and hearing can also be disrupted as well as a profound psychological impact following disfigurement. This oral and maxillofacial trauma update provides information on demographics, incidence, pathophysiology, diagnosis, fracture patterns and management of facial trauma. It also discusses the role of new advancements in the management of facial trauma.
Objective: This study aimed to evaluate an automated detection system to detect and classify permanent teeth on orthopantomogram (OPG) images using convolutional neural networks (CNNs). Methods: In total, 591 digital OPGs were collected from patients older than 18 years. Three qualified dentists performed individual teeth labelling on images to generate the ground truth annotations. A three-step procedure, relying upon CNNs, was proposed for automated detection and classification of teeth. Firstly, U-Net, a type of CNN, performed preliminary segmentation of tooth regions or detecting regions of interest (ROIs) on panoramic images. Secondly, the Faster R-CNN, an advanced object detection architecture, identified each tooth within the ROI determined by the U-Net. Thirdly, VGG-16 architecture classified each tooth into 32 categories, and a tooth number was assigned. A total of 17,135 teeth cropped from 591 radiographs were used to train and validate the tooth detection and tooth numbering modules. 90% of OPG images were used for training, and the remaining 10% were used for validation. 10-folds cross-validation was performed for measuring the performance. The intersection over union (IoU), F1 score, precision, and recall (i.e. sensitivity) were used as metrics to evaluate the performance of resultant CNNs. Results: The ROI detection module had an IoU of 0.70. The tooth detection module achieved a recall of 0.99 and a precision of 0.99. The tooth numbering module had a recall, precision and F1 score of 0.98. Conclusion: The resultant automated method achieved high performance for automated tooth detection and numbering from OPG images. Deep learning can be helpful in the automatic filing of dental charts in general dentistry and forensic medicine.
A clinical guideline is needed to appropriately manage patients presenting with odontogenic infections. We recommend the guideline be submitted to intradepartmental committees for assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.