Reinforcement learning is explored as a candidate machine learning technique to enhance existing analytical solutions for optimal trade execution with elements from the market microstructure. Given a volume-to-trade, xed time horizon and discrete trading periods, the aim is to adapt a given volume trajectory such that it is dynamic with respect to favourable/unfavourable conditions during realtime execution, thereby improving overall cost of trading. We consider the standard Almgren-Chriss model with linear price impact as a candidate base model. This model is popular amongst sell-side institutions as a basis for arrival price benchmark execution algorithms. By training a learning agent to modify a volume trajectory based on the market's prevailing spread and volume dynamics, we are able to improve post-trade implementation shortfall by up to 10.3% on average compared to the base model, based on a sample of stocks and trade sizes in the South African equity market.
SummaryThe need for new methods to deal with big data is a common theme in most scientific fields, although its definition tends to vary with the context. Statistical ideas are an essential part of this, and as a partial response, a thematic program on statistical inference, learning and models in big data was held in 2015 in Canada, under the general direction of the Canadian Statistical Sciences Institute, with major funding from, and most activities located at, the Fields Institute for Research in Mathematical Sciences. This paper gives an overview of the topics covered, describing challenges and strategies that seem common to many different areas of application and including some examples of applications to make these challenges and strategies more concrete.
We propose the application of a high-speed maximum likelihood clustering algorithm to detect temporal financial market states, using correlation matrices estimated from intraday market microstructure features. We first determine the ex-ante intraday temporal cluster configurations to identify market states, and then study the identified temporal state features to extract state signature vectors which enable online state detection. The state signature vectors serve as low-dimensional state descriptors which can be used in learning algorithms for optimal planning in the high-frequency trading domain. We present a feasible scheme for real-time intraday state detection from streaming market data feeds. This study identifies an interesting hierarchy of system behaviour which motivates the need for timescale specific state space reduction for participating agents.
We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.