Cyber-Physical Production Systems (CPPS) are long-living and mechatronic systems, which include mechanics, electrics/electronics and software. The interdisciplinary nature combined with challenges and trends in the context of Industry 4.0 such as a high degree of customization, small lot sizes and evolution cause a high amount of variability. Mastering the variability of functional control software, e.g., different control variants of an actuator type, is itself a challenge in de veloping and reusing CPPS software. This task becomes even more complex when considering extra-functional software such as operating modes, diagnosis and error handling. These software parts have high interdependencies with functional software, often involving the human-machine interface (HMI) to enable the intervention of operators. This paper illustrates the challenges in documenting the dependencies of these software parts including their variability using family models. A procedural and an object-oriented concept for implementing error handling, which represents an extra-functional task with high dependencies to functional software and the HMI, are proposed. The suitability of both concepts to increase the software's reusability and, thus, its flexibility in the context of Industry 4.0 is discussed. Their comparison confirms the high potential of the object-oriented extension of IEC 61131-3 to handle planned reuse of extra-functional CPPS software successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.