More than 500 unrelated patients with neurofibromatosis type 1 (NF1) were screened for mutations in the NF1 gene. For each patient, the whole coding sequence and all splice sites were studied for aberrations, either by the protein truncation test (PTT), temperature-gradient gel electrophoresis (TGGE) of genomic PCR products, or, most often, by direct genomic sequencing (DGS) of all individual exons. A total of 301 sequence variants, including 278 bona fide pathogenic mutations, were identified. As many as 216 or 183 of the genuine mutations, comprising 179 or 161 different ones, can be considered novel when compared to the recent findings of Upadhyaya and Cooper, or to the NNFF mutation database. Mutation-detection efficiencies of the various screening methods were similar: 47.1% for PTT, 53.7% for TGGE, and 54.9% for DGS. Some 224 mutations (80.2%) yielded directly or indirectly premature termination codons. These mutations showed even distribution over the whole gene from exon 1 to exon 47. Of all sequence variants determined in our study, <20% represent C-->T or G-->A transitions within a CpG dinucleotide, and only six different mutations also occur in NF1 pseudogenes, with five being typical C-->T transitions in a CpG. Thus, neither frequent deamination of 5-methylcytosines nor interchromosomal gene conversion may account for the high mutation rate of the NF1 gene. As opposed to the truncating mutations, the 28 (10.1%) missense or single-amino-acid-deletion mutations identified clustered in two distinct regions, the GAP-related domain (GRD) and an upstream gene segment comprising exons 11-17. The latter forms a so-called cysteine/serine-rich domain with three cysteine pairs suggestive of ATP binding, as well as three potential cAMP-dependent protein kinase (PKA) recognition sites obviously phosphorylated by PKA. Coincidence of mutated amino acids and those conserved between human and Drosophila strongly suggest significant functional relevance of this region, with major roles played by exons 12a and 15 and part of exon 16.
Neurofibromatosis type 1 (NF1) is a common familial tumour syndrome with multiple clinical features such as neurofibromas, café-au-lait spots (CLS), iris Lisch nodules, axillary freckling, optic glioma, specific bone lesions and an increased risk of malignant tumours. It is caused by a wide spectrum of mutations affecting the NF1 gene. Most mutations result in the loss of one allele at the DNA, mRNA or protein level and thus in the loss of any function of the gene product neurofibromin. The idea of the simultaneous loss of several different neurofibromin functions has been postulated to explain the pleiotropic effects of its loss. However, we have identified a novel missense mutation in a family with a classical multi-symptomatic NF1 phenotype, including a malignant schwannoma, that specifically abolishes the Ras-GTPase-activating function of neurofibromin. In this family, Arg1276 had mutated into proline. Based on complex biochemical studies as well as the analysis of the crystal structure of the GTPase-activating protein (GAP) domain of p120GAP in the presence of Ras, we unequivocally identified this amino acid as the arginine finger of the neurofibromin GAP-related domain (GRD)-the most essential catalytic element for RasGAP activity. Here, we present data demonstrating that the mutation R1276P, unlike previously reported missense mutations of the GRD region, does not impair the secondary and tertiary protein structure. It neither reduces the level of cellular neurofibromin nor influences its binding to Ras substantially, but it does completely disable GAP activity. Our findings provide direct evidence that failure of neurofibromin GAP activity is the critical element of NF1 pathogenesis. Thus, therapeutic approaches aimed at the reduction of Ras.GTP levels in neural crest-derived cells can be expected to relieve most of the NF1 symptoms.
Segmental neurofibromatosis (NF) is generally thought to result from a postzygotic NF1 (neurofibromatosis type 1) gene mutation. However, this has not yet been demonstrated at the molecular level. Using fluorescence in situ hybridisation (FISH) we identified an NF1 microdeletion in a patient with segmental NF in whom café-au-lait spots and freckles are limited to a single body region. The mutant allele was present in a mosaic pattern in cultured fibroblasts from a café-au-lait spot lesion, but was absent in fibroblasts from normal skin as well as in peripheral blood leukocytes. These findings prove the hypothesis that the molecular basis of segmental cutaneous NF is a mutation in the NF1 gene and that the regional distribution of manifestations reflects different cell clones, commensurate with the concept of somatic mosaicism.
In culture migrating and interacting amoeboid cells can form nematoid arrangements in analogy to a nematic liquid crystal phase. A nematoid arrangement is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (= pigment cells of the skin), human fibroblasts (= connective tissue cells), human osteoblasts (= bone cells), human adipocytes (= fat cells) etc., form a nematoid structure. Our hypothesis is that elastic properties of these nematoid structures can be described in analogy to that of classical nematic liquid crystals. The orientational elastic energy is derived and the orientational defects (disclination) of nematoid arrangements are investigated. The existence of halfnumbered disclinations shows that the nematoid structure has an apolar symmetry. The density-and order parameter dependence of the orientational elastic constants and their absolute values are estimated. From the defect structure, one finds that the splay elastic constant is smaller than the bend elastic constant (melanocytes). The core of a disclination is either a cell free space or occupied by non oriented cells (isotropic state), by a cell with a different symmetry, or by another cell type.
In human diseases related to tumor-suppressor genes, it is suggested that only the complete loss of the protein results in specific symptoms such as tumor formation, whereas simple reduction of protein quantity to 50%, called haploinsufficiency, essentially does not affect cellular behavior. Here, we demonstrate that haploinsufficiency of the tumorsuppressor gene neurofibromatosis type 1 (NF1) results in an increased variation of dendrite formation in cultured NF1 melanocytes. These morphological differences between NF1 and control melanocytes can be described by a mathematical model in which the cell is considered to be a self-organized automaton. The model describes the adjustment of the cells to a set point and includes a noise term that allows for stochastic processes. It describes the experimental data of control and NF1 melanocytes. In the cells haploinsufficient for NF1 we found an altered signal-to-noise ratio detectable as increased variation in dendrite formation in two of three investigated morphological parameters. We also suggest that in vivo NF1 haploinsufficiency results in an increased noise in cellular regulation and that this effect of haploinsufficiency may be found also in other tumor suppressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.