Starting from differently substituted boronic acids as versatile building block, new "ortho-aryl" alpha-diimine ligands a-h were synthesized in an easy, high-yielding route. Reaction of the complex precursor diacetylacetonato-nickel(II) with a trityl salt, like [CPh3] [B(C6F5)4] or [CPh3] [SbCl6], in the presence of the diimine ligands afford the monocationic, square planar complexes 2a-g in almost quantitative yields. Suitable crystals (2d',e,f,g) were submitted for X-ray diffraction analysis. A geometry model was developed to describe the orientation of ligand fragments around the nickel(II) center that influence the polymer microstructure. At elevated reaction temperature and pressure, and in the presence of hydrogen, 2a-e catalyze the homopolymerization of ethylene to give branched PE products ranging from HD- to LLD-PE grades. The polymerization results indicate the possibility of precise microstructure control depending on the particular complex substitution. Preliminary investigations on material density and mechanical behavior by uniaxial stretching until failure point toward new material properties that can result from the simple ethylene monomer by catalyst design.
The reaction of 1,4-bis(diisopropylphenyl)-aza-1,4-butadienenickel dibromide (1a) with stoichiometric amounts of
phenyl Grignard or trimethylaluminum affords the purple Ni(I) complexes 1b and 1c, respectively. Single-crystal X-ray
diffraction reveals dinuclear species in the solid state for both
compounds. UV/vis spectroscopy supports this rare oxidation
state of nickel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.