Ultrasound excited thermography allows for defect selective imaging using thermal waves that are generated by elastic waves. The mechanism involved is local friction or hysteresis which turns a dynamically loaded defect into a heat source which is identified by a thermography system. If the excitation frequency matches to a resonance of the vibrating system, temperature patterns can occur that are caused by standing elastic waves. This undesirable patterns can affect the detection of damages in a negative way. We describe a technique how the defect detectability of ultrasound activated thermography can be improved. With the objective of a preferably diffuse distributed sonic field we applied frequency modulated ultrasound to the material. That way the standing waves can be eliminated or reduced and the detectability is improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.