Abstract.A novel member of the cadherin family of cell adhesion molecules has been characterized by cloning from rat liver, sequencing of the corresponding cDNA, and functional analysis after heterologous expression in nonadhesive $2 cells, cDNA clones were isolated using a polyclonal antibody inhibiting Ca2+-dependent intercellular adhesion of hepatoma cells. As inferred from the deduced amino acid sequence, the novel molecule has homologies with E-, P-, and N-cadherins, but differs from these classical cadherins in four characteristics. Its extracellular domain is composed of five homologous repeated domains instead of four characteristic for the classical cadherins. Four of the five domains are characterized by the sequence motifs DXNDN and DXD or modifications thereof representing putative Ca2+-binding sites of classical cadherins. In its NH2-terminal region, this cadherin lacks both the precursor segment and the endogenous protease cleavage site RXKR found in classical cadherins. In the extracellular EC1 domain, the novel cadherin contains an AAL sequence in place of the HAV sequence motif representing the common cell adhesion recognition sequence of E-, P-, and N-cadherin. In contrast to the conserved cytoplasmic domain of classical cadherins with a length of 150-160 amino acid residues, that of the novel cadherin has only 18 amino acids. Examination of transfected $2 cells showed that despite these structural differences, this cadherin mediates intercellular adhesion in a Ca2+-dependent manner. The novel cadherin is solely expressed in liver and intestine and was, hence, assigned the name LI-cadherin. In these tissues, LI-cadherin is localized to the basolateral domain of hepatocytes and enterocytes. These results suggest that LI-cadherin represents a new cadherin subtype and may have a role in the morphological organization of liver and intestine.C ELL-cell interactions are of fundamental importance for the development and the maintenance of tissues and organs in multicellular organisms. The basic morphogenetic processes involved in organogenesis, including cellular aggregation, segregation, and migration, are mediated and controlled by an increasingly large and complex number of cell adhesion molecules that exhibit a well-regulated spatiotemporal pattern of expression during development and regeneration (for review see Simons and Fuller, 1985;Ekblom et al
The gastrin-releasing peptide receptor (GRPr) is overexpressed on various human tumors. The goal of our study was the synthesis of new 18F-labeled bombesin analogues for the PET imaging of GRPr expression in prostate tumor using a silicon-based one-step n. c. a. radiolabeling method. The silicon-containing building blocks were efficiently coupled to the N-terminus of the peptides via solid-phase synthesis. Radiolabeling of the obtained peptide precursors proceeded smoothly under acidic conditions (34-85% conversion). Using the di-tert-butyl silyl building block as labeling moiety, products containing a hydrolytically stable 18F-label were obtained. In in vitro receptor binding experiments 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH 2 ( 4b, IC50 = 22.9 nM) displayed a 12-fold higher binding affinity than 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-Gly-His(3Me)-Sta-Leu-NH2 ( 3b, IC50 = 276.6 nM), and 4b was therefore chosen for further evaluation. In vitro and ex vivo metabolite studies of [18F]4b showed no significant degradation. In biodistribution experiments, tumor uptake of [18F]4b was low and unspecific, whereas the GRPr-rich pancreas revealed a high and specific accumulation of the radiotracer. This study demonstrates the applicability of our silicon-based one-step n. c. a. radiolabeling method for the synthesis of new 18F-labeled bombesin derivatives. This innovative approach represents a general, straightforward access to radiolabeled peptides as PET imaging probes.
The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced 99m Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. Methods: A C-terminal cysteine was introduced into the Affibody molecule Z HER2:342 to enable sitespecific labeling with 99m Tc. Two recombinant variants, His 6 -Z HER2:342 -Cys (dissociation constant [K D ], 29 pM) and Z HER2:2395 -Cys, lacking a His tag (K D , 27 pM), were labeled with 99m Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and g-camera imaging studies were performed in mice bearing HER2-expressing xenografts. Results: 99m TcHis 6 -Z HER2:342 -Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. 99m Tc-Z HER2:2395 -Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 6 2.5 (mean 6 SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 6 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 6 24 and 121 6 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical g-camera 1 h after injection of 99m Tc-Z HER2:2395 -Cys. Conclusion: The Affibody molecule 99m Tc-Z HER2:2395 -Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
Purpose: The expression of extra domain B (ED-B) fibronectin is always associated with angiogenic processes and can be exclusively observed in tissues undergoing growth and/or extensive remodeling. Due to this selective expression, ED-B fibronectin is an interesting target for radioimmunotherapy of malignant diseases. The aim of this study was to identify the most appropriate ED-B-targeting radioimmunoconjugate for the therapy of solid tumors. Experimental Design: Three ED-B fibronectin-binding human antibody formats of L19 were investigated: dimeric single-chain Fv (f50 kDa), ''small immunoprotein'' (SIP, f80 kDa), and immunoglobulin G1 (IgG1, f150 kDa). These L19 derivatives were either labeled with I-125 or with In-111 (using MX-diethylenetriaminepentaacetic acid, MX-DTPA). Pharmacokinetics and tumor accumulation of the radiolabeled immunoconjugates were investigated in F9 (murine teratocarcinoma) tumor-bearing mice. Subsequently, dosimetry for the corresponding therapeutic isotopes I-13-1andY-90 was done. After testing the myelotoxicity of I-131-L19-SIP and I-131-L19-IgG1in non-tumor-bearing mice, the therapeutic efficacy of these iodinated antibody formats was finally investigated in F9 tumor-bearing mice. Results: The most favorable therapeutic index was found for I-131-L19-SIP followed by I-131-L19-IgG1. The therapeutic index of all In-111-labeled derivatives was significantly inferior. Considering the bone marrow as the dose-limiting organ, it was calculated that activities of 74 MBq I-131-L19-SIP and 25 MBq I-131-L19-IgG1 could be injected per mouse without causing severe myelotoxicity. The best therapeutic efficacy was observed using I-131-L19-SIP, resulting in significant tumor growth delay and prolonged survival after a single injection. Conclusion: Compared with other L19-based radioimmunoconjugates, I-131-L19-SIP is characterized by superior antitumor efficacy and toxicity profile in the F9 teratocarcinoma animal model. These results indicate that ED-B fibronectin-targeted radioimmunotherapy using I-131-L19-SIP has potential to be applied to treatment of solid cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.