Background
Explainability is one of the most heavily debated topics when it comes to the application of artificial intelligence (AI) in healthcare. Even though AI-driven systems have been shown to outperform humans in certain analytical tasks, the lack of explainability continues to spark criticism. Yet, explainability is not a purely technological issue, instead it invokes a host of medical, legal, ethical, and societal questions that require thorough exploration. This paper provides a comprehensive assessment of the role of explainability in medical AI and makes an ethical evaluation of what explainability means for the adoption of AI-driven tools into clinical practice.
Methods
Taking AI-based clinical decision support systems as a case in point, we adopted a multidisciplinary approach to analyze the relevance of explainability for medical AI from the technological, legal, medical, and patient perspectives. Drawing on the findings of this conceptual analysis, we then conducted an ethical assessment using the “Principles of Biomedical Ethics” by Beauchamp and Childress (autonomy, beneficence, nonmaleficence, and justice) as an analytical framework to determine the need for explainability in medical AI.
Results
Each of the domains highlights a different set of core considerations and values that are relevant for understanding the role of explainability in clinical practice. From the technological point of view, explainability has to be considered both in terms how it can be achieved and what is beneficial from a development perspective. When looking at the legal perspective we identified informed consent, certification and approval as medical devices, and liability as core touchpoints for explainability. Both the medical and patient perspectives emphasize the importance of considering the interplay between human actors and medical AI. We conclude that omitting explainability in clinical decision support systems poses a threat to core ethical values in medicine and may have detrimental consequences for individual and public health.
Conclusions
To ensure that medical AI lives up to its promises, there is a need to sensitize developers, healthcare professionals, and legislators to the challenges and limitations of opaque algorithms in medical AI and to foster multidisciplinary collaboration moving forward.
Brain vessel status is a promising biomarker for better prevention and treatment in cerebrovascular disease. However, classic rule-based vessel segmentation algorithms need to be hand-crafted and are insufficiently validated. A specialized deep learning method—the U-net—is a promising alternative. Using labeled data from 66 patients with cerebrovascular disease, the U-net framework was optimized and evaluated with three metrics: Dice coefficient, 95% Hausdorff distance (95HD) and average Hausdorff distance (AVD). The model performance was compared with the traditional segmentation method of graph-cuts. Training and reconstruction was performed using 2D patches. A full and a reduced architecture with less parameters were trained. We performed both quantitative and qualitative analyses. The U-net models yielded high performance for both the full and the reduced architecture: A Dice value of ~0.88, a 95HD of ~47 voxels and an AVD of ~0.4 voxels. The visual analysis revealed excellent performance in large vessels and sufficient performance in small vessels. Pathologies like cortical laminar necrosis and a rete mirabile led to limited segmentation performance in few patients. The U-net outperfomed the traditional graph-cuts method (Dice ~0.76, 95HD ~59, AVD ~1.97). Our work highly encourages the development of clinically applicable segmentation tools based on deep learning. Future works should focus on improved segmentation of small vessels and methodologies to deal with specific pathologies.
Peritumoral mapping of the motor cortex by nTMS agreed well with the gold standard of DCS. Thus, nTMS is a reliable tool for preoperative mapping of motor function.
nTMS provides crucial data for preoperative planning and surgical resection of tumors involving essential motor areas. Expanding surgical indications and extent of resection based on nTMS enables more patients to undergo surgery and might lead to better neurological outcomes and higher survival rates in brain tumor patients. The impact of this study should go far beyond the neurosurgical community because it could fundamentally improve treatment and outcome, and its results will likely change clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.