Abstract. New lower bounds for three-and four-level designs under the centered L 2 -discrepancy are provided. We describe necessary conditions for the existence of a uniform design meeting these lower bounds. We consider several modifications of two stochastic optimization algorithms for the problem of finding uniform or close to uniform designs under the centered L 2 -discrepancy. Besides the threshold accepting algorithm, we introduce an algorithm named balance-pursuit heuristic. This algorithm uses some combinatorial properties of inner structures required for a uniform design. Using the best specifications of these algorithms we obtain many designs whose discrepancy is lower than those obtained in previous works, as well as many new low-discrepancy designs with fairly large scale. Moreover, some of these designs meet the lower bound, i.e., are uniform designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.