In epithelial cells, tyrosine kinases induce the tyrosine phosphorylation and ubiquitination of the E-cadherin complex, which induces endocytosis of E-cadherin. With a modified yeast 2-hybrid system, we isolated Hakai, an E-cadherin binding protein, which we have identified as an E3 ubiquitin-ligase. Hakai contains SH2, RING, zinc-finger and proline-rich domains, and interacts with E-cadherin in a tyrosine phosphorylation-dependent manner, inducing ubiquitination of the E-cadherin complex. Expression of Hakai in epithelial cells disrupts cell--cell contacts and enhances endocytosis of E-cadherin and cell motility. Through dynamic recycling of E-cadherin, Hakai can thus modulate cell adhesion, and could participate in the regulation of epithelial--mesenchymal transitions in development or metastasis.
beta-Catenin is an essential component of the canonical Wnt signaling system that controls decisive steps in development. We employed here two conditional beta-catenin mutant alleles to alter beta-catenin signaling in the central nervous system of mice: one allele to ablate beta-catenin and the second allele to express a constitutively active beta-catenin. The tissue mass of the spinal cord and brain is reduced after ablation of beta-catenin, and the neuronal precursor population is not maintained. In contrast, the spinal cord and brain of mice that express activated beta-catenin is much enlarged in mass, and the neuronal precursor population is increased in size. beta-Catenin signals are thus essential for the maintenance of proliferation of neuronal progenitors, controlling the size of the progenitor pool, and impinging on the decision of neuronal progenitors to proliferate or to differentiate.
In the present study, it was shown that physiologically relevant levels of the proinflammatory cytokine TNF ␣ induced apoptosis in rat cardiomyocytes in vitro, as quantified by single cell microgel electrophoresis of nuclei ("cardiac comets") as well as by morphological and biochemical criteria. It was also shown that TNF ␣ stimulated production of the endogenous second messenger, sphingosine, suggesting sphingolipid involvement in TNF ␣ -mediated cardiomyocyte apoptosis. Consistent with this hypothesis, sphingosine strongly induced cardiomyocyte apoptosis. The ability of the appropriate stimulus to drive cardiomyocytes into apoptosis indicated that these cells were primed for apoptosis and were susceptible to clinically relevant apoptotic triggers, such as TNF ␣ . These findings suggest that the elevated TNF ␣ levels seen in a variety of clinical conditions, including sepsis and ischemic myocardial disorders, may contribute to TNF ␣ -induced cardiac cell death. Cardiomyocyte apoptosis is also discussed in terms of its potential beneficial role in limiting the area of cardiac cell involvement as a consequence of myocardial infarction, viral infection, and primary cardiac tumors. (J. Clin. Invest. 1996. 98:2854-2865 )
Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by α1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal–regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the α-skeletal actin (α-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and α-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and α-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy.
The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1−/− embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1−/− embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1−/−:c-Met+/− embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.