Hydra, a member of the diploblastic phylum Cnidaria, exhibits the most basic type of organized metazoan tissues. Two unicellular sheets of polarized epithelial cells - ectoderm and endoderm - form a double layer throughout the body column. The double layer can be reestablished from single-cell suspensions by tissue-specific cell-sorting processes. However, the underlying pattern of interactions between ectodermal and endodermal epithelial cells responsible for double-layer formation is unclear. By analyzing cell interactions in a quantitative adhesion assay using mechanically dissociated Hydra epithelial cells, we show that aggregation proceeds in two steps. First, homotypic interactions within ectodermal epithelial cells (ecto-ecto) and within endodermal epithelial cells (endo-endo) form homotypic cell clusters. Second, at an aggregate size of about ten epithelial cells/cluster, ectodermal and endodermal clusters start to form heterotypic aggregates. Homotypic ecto-ecto interactions are inhibited by a polyclonal anti-Hydra membrane antiserum, and under these conditions homotypic endo-endo interactions do not proceed beyond a size of about ten epithelial cells/cluster. These data suggest that homotypic cell clusters reduce their initial homotypic affinity and acquire a new heterotypic affinity. A link between cell adhesion and cell signaling in early Hydra aggregates is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.