Abstract-A deterministic procedure for optimal approximation of arbitrary probability density functions by means of Dirac mixtures with equal weights is proposed. The optimality of this approximation is guaranteed by minimizing the distance of the approximation from the true density. For this purpose a distance measure is required, which is in general not well defined for Dirac mixtures. Hence, a key contribution is to compare the corresponding cumulative distribution functions.This paper concentrates on the simple and intuitive integral quadratic distance measure. For the special case of a Dirac mixture with equally weighted components, closedform solutions for special types of densities like uniform and Gaussian densities are obtained. Closed-form solution of the given optimization problem is not possible in general. Hence, another key contribution is an efficient solution procedure for arbitrary true densities based on a homotopy continuation approach.In contrast to standard Monte Carlo techniques like particle filters that are based on random sampling, the proposed approach is deterministic and ensures an optimal approximation with respect to a given distance measure. In addition, the number of required components (particles) can easily be deduced by application of the proposed distance measure. The resulting approximations can be used as basis for recursive nonlinear filtering mechanism alternative to Monte Carlo methods.
Abstract-Recursive prediction of the state of a nonlinear stochastic dynamic system cannot be efficiently performed in general, since the complexity of the probability density function characterizing the system state increases with every prediction step. Thus, representing the density in an exact closed-form manner is too complex or even impossible. So, an appropriate approximation of the density is required. Instead of directly approximating the predicted density, we propose the approximation of the transition density by means of Gaussian mixtures. We treat the approximation task as an optimization problem that is solved offline via progressive processing to bypass initialization problems and to achieve high quality approximations. Once having calculated the transition density approximation offline, prediction can be performed efficiently resulting in a closed-form density representation with constant complexity.
Abstract-Efficiently implementing nonlinear Bayesian estimators is still an unsolved problem, especially for the multidimensional case. A trade-off between estimation quality and demand on computational resources has to be found. Using multidimensional Fourier series as representation for probability density functions, so called Fourier densities, is proposed. To ensure non-negativity, the approximation is performed indirectly via Ψ-densities, of which the absolute square represent the Fourier density. It is shown that Ψ-densities can be determined using the efficient fast Fourier transform algorithm and their coefficients have an ordering with respect to the Hellinger metric. Furthermore, the multidimensional Bayesian estimator based on Fourier densities is derived in closed form. That allows an efficient realization of the Bayesian estimator where the demands on computational resources are adjustable.
Abstract-Filtering or measurement updating for nonlinear stochastic dynamic systems requires approximate calculations, since an exact solution is impossible to obtain in general. We propose a Gaussian mixture approximation of the conditional density, which allows performing measurement updating in closed form. The conditional density is a probabilistic representation of the nonlinear system and depends on the random variable of the measurement given the system state. Unlike the likelihood, the conditional density is independent of actual measurements, which permits determining its approximation off-line. By treating the approximation task as an optimization problem, we use progressive processing to achieve high quality results. Once having calculated the conditional density, the likelihood can be determined on-line, which, in turn, offers an efficient approximate filter step. As result, a Gaussian mixture representation of the posterior density is obtained. The exponential growth of Gaussian mixture components resulting from repeated filtering is avoided implicitly by the prediction step using the proposed techniques.
Abstract-In this paper, an approach to the finite-horizon optimal state-feedback control problem of nonlinear, stochastic, discrete-time systems is presented. Starting from the dynamic programming equation, the value function will be approximated by means of Taylor series expansion up to second-order derivatives. Moreover, the problem will be reformulated, such that a minimum principle can be applied to the stochastic problem. Employing this minimum principle, the optimal control problem can be rewritten as a two-point boundary-value problem to be solved at each time step of a shrinking horizon. To avoid numerical problems, the two-point boundary-value problem will be solved by means of a continuation method. Thus, the curse of dimensionality of dynamic programming is avoided, and good candidates for the optimal state-feedback controls are obtained. The proposed approach will be evaluated by means of a scalar example system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.