A mathematical model that describes the replication of influenza A virus in animal cells in large-scale microcarrier culture is presented. The virus is produced in a two-step process, which begins with the growth of adherent Madin-Darby canine kidney (MDCK) cells. After several washing steps serum-free virus maintenance medium is added, and the cells are infected with equine influenza virus (A/Equi 2 (H3N8), Newmarket 1/93). A time-delayed model is considered that has three state variables: the number of uninfected cells, infected cells, and free virus particles. It is assumed that uninfected cells adsorb the virus added at the time of infection. The infection rate is proportional to the number of uninfected cells and free virions. Depending on multiplicity of infection (MOI), not necessarily all cells are infected by this first step leading to the production of free virions. Newly produced viruses can infect the remaining uninfected cells in a chain reaction. To follow the time course of virus replication, infected cells were stained with fluorescent antibodies. Quantitation of influenza viruses by a hemagglutination assay (HA) enabled the estimation of the total number of new virions produced, which is relevant for the production of inactivated influenza vaccines. It takes about 4-6 h before visibly infected cells can be identified on the microcarriers followed by a strong increase in HA titers after 15-16 h in the medium. Maximum virus yield Vmax was about 1x10(10) virions/mL (2.4 log HA units/100 microL), which corresponds to a burst size ratio of about 18,755 virus particles produced per cell. The model tracks the time course of uninfected and infected cells as well as virus production. It suggests that small variations (<10%) in initial values and specific rates do not have a significant influence on Vmax. The main parameters relevant for the optimization of virus antigen yields are specific virus replication rate and specific cell death rate due to infection. Simulation studies indicate that a mathematical model that neglects the delay between virus infection and the release of new virions gives similar results with respect to overall virus dynamics compared with a time delayed model.
Influenza viruses are a major public health burden during seasonal epidemics and a continuous threat due to their potential to cause pandemics. Annual vaccination provides the best protection against the contagious respiratory illness caused by influenza viruses. However, the current production capacities for influenza vaccines are insufficient to meet the increasing demands. We explored the possibility to establish a continuous production process for influenza viruses using the duck-derived suspension cell line AGE1.CR. A two-stage bioreactor setup was designed in which cells were cultivated in a first stirred tank reactor where an almost constant cell concentration was maintained. Cells were then constantly fed to a second bioreactor where virus infection and replication took place. Using this two-stage reactor system, it was possible to continuously produce influenza viruses. Surprisingly, virus titers showed a periodic increase and decrease during the run-time of 17 days. These titer fluctuations were caused by the presence of defective interfering particles (DIPs), which we detected by PCR. Mathematical modeling confirmed this observation showing that constant virus titers can only emerge in the absence of DIPs. Even with very low amounts of DIPs in the seed virus and very low rates for de novo DIP generation, defective viruses rapidly accumulate and, therefore, represent a serious challenge for continuous vaccine production. Yet, the continuous replication of influenza virus using a two-stage bioreactor setup is a novel tool to study aspects of viral evolution and the impact of DIPs.
In analyzing and mathematical modeling of complex (bio)chemical reaction networks, formal methods that connect network structure and dynamic behavior are needed because often, quantitative knowledge of the networks is very limited. This applies to many important processes in cell biology. Chemical reaction network theory allows for the classification of the potential network behavior-for instance, with respect to the existence of multiple steady states-but is computationally limited to small systems. Here, we show that by analyzing subnetworks termed elementary flux modes, the applicability of the theory can be extended to more complex networks. For an example network inspired by cell cycle control in budding yeast, the approach allows for model discrimination, identification of key mechanisms for multistationarity, and robustness analysis. The presented methods will be helpful in modeling and analyzing other complex reaction networks.reaction network ͉ structure ͉ elementary flux mode ͉ bistability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.