Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids.secondary metabolism ͉ gene recruitment ͉ initiation factor 5A ͉ alkaloid phylogeny ͉ plant chemical defense
Species of several unrelated families within the angiosperms are able to constitutively produce pyrrolizidine alkaloids as a defense against herbivores. In pyrrolizidine alkaloid (PA) biosynthesis, homospermidine synthase (HSS) catalyzes the first specific step. HSS was recruited during angiosperm evolution from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of eukaryotic initiation factor 5A. Phylogenetic analysis of 23 cDNA sequences coding for HSS and DHS of various angiosperm species revealed at least four independent recruitments of HSS from DHS: one within the Boraginaceae, one within the monocots, and two within the Asteraceae family. Furthermore, sequence analyses indicated elevated substitution rates within HSS-coding sequences after each gene duplication, with an increased level of nonsynonymous mutations. However, the contradiction between the polyphyletic origin of the first enzyme in PA biosynthesis and the structural identity of the final biosynthetic PA products needs clarification.
Larvae of Tyria jacobaeae feed solely upon the pyrrolizidine alkaloidcontaining plant Senecio jacobaea. Ingested pyrrolizidine alkaloids (PAs), which are toxic to unspecialized insects and vertebrates, are efficiently N-oxidized in the hemolymph of T. jacobaeae by senecionine N-oxygenase (SNO), a flavin-dependent monooxygenase (FMO) with a high substrate specificity for PAs. Peptide microsequences obtained from purified T. jacobaeae SNO were used to clone the corresponding cDNA, which was expressed in active form in Escherichia coli. T. jacobaeae SNO possesses a signal peptide characteristic of extracellular proteins, and it belongs to a large family of mainly FMO-like sequences of mostly unknown function, including two predicted Drosophila melanogaster gene products. The data indicate that the gene for T. jacobaeae SNO, highly specific for toxic pyrrolizidine alkaloids, was recruited from a preexisting insect-specific FMO gene family of hitherto unknown function. The enzyme allows the larvae to feed on PA-containing plants and to accumulate predation-deterrent PAs in the hemolymph.N-oxidation ͉ alkaloid sequestering insects ͉ insect adaptation ͉ chemical defense ͉ gene recruitment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.