Due to the high-cost and limitations of current wound healing treatments, the search for alternative approaches or drugs, particularly from medicinal plants, is of key importance. In this study, we report anti-inflammatory and wound healing activities of the major calophyllolide (CP) compound isolated from Calophyllum inophyllum Linn. The results showed that CP had no effect on HaCaT cell viability over a range of concentrations. CP reduced fibrosis formation and effectively promoted wound closure in mouse model without causing body weight loss. The underlying molecular mechanisms of wound repair by CP was investigated. CP markedly reduced MPO activity, and increased M2 macrophage skewing, as shown by up-regulation of M2-related gene expression, which is beneficial to the wound healing process. CP treatment prevented a prolonged inflammatory process by down-regulation of the pro-inflammatory cytokines—IL-1β, IL-6, TNF-α, but up-regulation of the anti-inflammatory cytokine, IL-10. This study is the first to indicate a plausible role for CP in accelerating the process of wound healing through anti-inflammatory activity mechanisms, namely, by regulation of inflammatory cytokines, reduction in MPO, and switching of macrophages to an M2 phenotype. These findings may enable the utilization of CP as a potent therapeutic for cutaneous wound healing.
Graphical abstract The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein–protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular docking. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key residues of the receptor and had a binding free energy < − 20 kcal/mol. By intensive calculations using data from molecular dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study. Supplementary Information The online version contains supplementary material available at 10.1007/s11030-021-10359-4.
Introduction: Telepharmacy, the application of information and communication technologies in healthcare services, has been adopted in many countries to provide patients with pharmaceutical care. However, it has yet to be widely used in Vietnam. This study was conducted to assess the current status of use and the factors associated with the willingness to use telepharmacy of pharmacists in Vietnam. Methods: A descriptive cross-sectional study was conducted from February to July 2021; 414 pharmacists were recruited to fill in an online survey. Results: Overall, 86.7% of participants have used telepharmacy application and 87.2% of them were willing to apply telepharmacy in pharmacy practice. According to our multivariate analysis, the level of readiness was associated with positive attitude (odds ratio [OR] = 4.67; 95% confidence interval [CI]: 2.26-9.66), and a good behavior (OR = 11.34; 95% CI: 3.84-33.45). Discussion: Developing a telepharmacy system with appropriate features is essential to meet the requirements of pharmacy practice amid the spread of the COVID-19 pandemic.
Interleukin 6 (IL-6) is a cytokine with various biological functions in immune regulation, hematopoiesis, and inflammation. Elevated IL-6 levels have been identified in several severe disorders such as sepsis, acute respiratory distress syndrome (ARDS), and most recently, COVID-19. The biological activity of IL-6 relies on interactions with its specific receptor, IL-6Rα, including the membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R). Thus, inhibition of the interaction between these two proteins would be a potential treatment for IL-6 related diseases. To date, no orally available small-molecule drug has been approved. This study focuses on finding potential small molecules that can inhibit protein-protein interactions between IL-6 and its receptor IL-6Rα using its crystal structure (PDB ID: 5FUC). First, two pharmacophore models were constructed based on the interactions between key residues of IL-6 (Phe74, Phe78, Leu178, Arg179, Arg182) and IL-6Rα (Phe229, Tyr230, Glu277, Glu278, Phe279). A database of approximately 22 million compounds was screened using 3D-pharmacophore models, molecular docking models, and ADMET properties. By analyzing the interactive capability of successfully docked compounds with important amino acids, 12 potential ligands were selected for further analysis via molecular dynamics simulations. Based on the stability of the complexes, the high interactions rate of each ligand with the key residues of IL-6/IL-6Rα, and the low binding free energy calculation, two compounds ZINC83804241 and ZINC02997430, were identified as the most potential IL-6 inhibitor candidates. These results will pave the way for the design and optimization of more specific compounds to combat cytokine storm in severe coronavirus patients.
The World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine). For the initial stage of infection, the MPXV needs to attach to the human cell surface glycosaminoglycan (GAG) adhesion molecules using its E8 protein. However, up until now, neither a structure for the MPXV E8 protein nor a specific cure for the MPXV exists. This study aimed to search for small molecules that inhibit the MPXV E8 protein, using computational approaches. In this study, a high-quality three-dimensional structure of the MPXV E8 protein was retrieved by homology modeling using the AlphaFold deep learning server. Subsequent molecular docking and molecular dynamics simulations (MDs) for a cumulative duration of 2.1 microseconds revealed that ZINC003977803 (Diosmin) and ZINC008215434 (Flavin adenine dinucleotide-FAD) could be potential inhibitors against the E8 protein with the MM/GBSA binding free energies of −38.19 ± 9.69 and −35.59 ± 7.65 kcal·mol−1, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.