The World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine). For the initial stage of infection, the MPXV needs to attach to the human cell surface glycosaminoglycan (GAG) adhesion molecules using its E8 protein. However, up until now, neither a structure for the MPXV E8 protein nor a specific cure for the MPXV exists. This study aimed to search for small molecules that inhibit the MPXV E8 protein, using computational approaches. In this study, a high-quality three-dimensional structure of the MPXV E8 protein was retrieved by homology modeling using the AlphaFold deep learning server. Subsequent molecular docking and molecular dynamics simulations (MDs) for a cumulative duration of 2.1 microseconds revealed that ZINC003977803 (Diosmin) and ZINC008215434 (Flavin adenine dinucleotide-FAD) could be potential inhibitors against the E8 protein with the MM/GBSA binding free energies of −38.19 ± 9.69 and −35.59 ± 7.65 kcal·mol−1, respectively.
The main protease 3CL
pro
is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CL
pro
protease in the binding pocket. This study explored an in-house database of 269 chalcones as 3CL
pro
inhibitors using in silico screening models, including molecular docking, molecular dynamics simulation, binding free energy calculation, and ADME prediction.
C264
and
C235
stand out as the two most potential structures. The top hit compound
C264
was with the Jamda score of −2.8329 and the MM/GBSA binding energy mean value of −28.23 ± 3.53 kcal/mol, which was lower than the reference ligand. Despite the lower mean binding energy (−22.07 ± 3.39 kcal/mol), in-depth analysis of binding interaction suggested
C235
could be another potential candidate. Further, in vitro and in vivo experiments are required to confirm the inhibitory ability.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11224-022-02000-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.