The development of insecticide resistance in malaria vectors is of increasing concern in Ethiopia because of its potential implications for vector control failure. To better elucidate the specificity of resistance mechanisms and to facilitate the design of control strategies that minimize the likelihood of selecting for cross-resistance, a whole transcriptomic approach was used to explore gene expression patterns in a multi-insecticide resistant population of Anopheles arabiensis from Oromia Region, Ethiopia. This field population was resistant to the diagnostic doses of malathion (average mortality of 71.9%) and permethrin (77.4%), with pools of survivors and unexposed individuals analyzed using Illumina RNA-sequencing, alongside insecticide susceptible reference strains. This population also demonstrated deltamethrin resistance but complete susceptibility to alpha-cypermethrin, bendiocarb and propoxur, providing a phenotypic basis for detecting insecticide-specific resistance mechanisms. Transcriptomic data revealed overexpression of genes including cytochrome P450s, glutathione-stransferases and carboxylesterases (including CYP4C36,
Methanogens are restricted to a few genera of Archaea, however they have great importance in the carbon cycle, impacting climactic considerations, and also find a role in renewable energy in the form of biogas. Here, we examine the microbial contribution to the production of methane in a sargassum fed anaerobic saltwater bioreactor, which are poorly characterized compared to fresh water bioreactors, using a comprehensive functional metagenomics approach. Despite abundant production of methane, we detected a low proportion of Archaea in the system using 16S rRNA community profile analyses. We address the low representation using an additional 16S rRNA analysis of shotgun data and a consideration of CO2:CH4 production. Using a novel network alignment and tree building approach, we measured similarity between the meta-metabolic capabilities of different anaerobic microbial communities. The saltwater bioreactor samples clustered together, validating the approach and providing a method of determining meta-metabolic similarity between microbial communities, with a range of potential applications. We also introduce a number of additional approaches for examining and interpreting meta-metabolic network topology. The low abundance of methanogens appears as a common property of such anaerobic systems and likely reflects the relatively poor energetics of methanogens, while examination of key enzymes confirms that hydrogen producing bacteria are the major fermentative guild. Our results indicate that the use of readily available seawater and marine macroalgae is a promising approach to the production of biogas as a source of renewable energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.