With an increasing number of robots are employed in manufacturing, a human-robot interaction method that can teach robots in a natural, accurate, and rapid manner is needed. In this paper, we propose a novel human-robot interface based on the combination of static hand gestures and hand poses. In our proposed interface, the pointing direction of the index finger and the orientation of the whole hand are extracted to indicate the moving direction and orientation of the robot in a fast-teaching mode. A set of hand gestures are designed according to their usage in humans' daily life and recognized to control the position and orientation of the robot in a fine-teaching mode. We employ the feature extraction ability of the hand pose estimation network via transfer learning and utilize attention mechanisms to improve the performance of the hand gesture recognition network. The inputs of hand pose estimation and hand gesture recognition networks are monocular RGB images, making our method independent of depth information input and applicable to more scenarios. In the regular shape reconstruction experiments on the UR3 robot, the mean error of the reconstructed shape is less than 1 mm, which demonstrates the effectiveness and efficiency of our method.
With an increasing number of robots are employed in manufacturing, a human-robot interaction method that can teach robots in a natural, accurate, and rapid manner is needed. In this paper, we propose a novel human-robot interface based on the combination of static hand gestures and hand poses. In our proposed interface, the pointing direction of the index finger and the orientation of the whole hand are extracted to indicate the moving direction and orientation of the robot in a fast-teaching mode. A set of hand gestures are designed according to their usage in humans' daily life and recognized to control the position and orientation of the robot in a fine-teaching mode. We employ the feature extraction ability of the hand pose estimation network via transfer learning and utilize attention mechanisms to improve the performance of the hand gesture recognition network. The inputs of hand pose estimation and hand gesture recognition networks are monocular RGB images, making our method independent of depth information input and applicable to more scenarios. In the regular shape reconstruction experiments on the UR3 robot, the mean error of the reconstructed shape is less than 1 mm, which demonstrates the effectiveness and efficiency of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.