This report deals with the relationships between glucose (G) and insulin on the tubular transport of phosphate (P) in chronically diabetic rats with high plasma levels of parathyroid hormone (PTH). Alloxan-induced diabetes leads to phosphorus depletion of the soft tissues. This phenomenon appears associated with weight loss and negative P balances caused by the increased urinary P excretion. Administration of 2 IU of insulin/100 g body weight (bw) to diabetic rats normalized their P balance and body weight. The effect of parathyroid function on the P metabolism of diabetic rats was investigated with balance experiments. Diabetic rats, intact or thyroparathyroidectomized (TPTX), have a greater urinary excretion of P than their controls. However, in control rats, the ratio intact:TPTX for urinary P is 1.0:0.76, showing the antiphosphaturic effect of parathyroid ablation. For diabetic animals, on the other hand, the ratio is 1.0:1.44. The simultaneous deficit of insulin and PTH thus quadruples the urinary P loss, instead of compensating for each other. The contribution of insulin deficit and hyperglycemia to the defect in tubular reabsorption (TRP) was investigated with clearance experiments (done on anesthetized, perfused rats). Five experimental groups were used: Controls (C), diabetics (D), controls + glucose (C + G), diabetics + insulin (D + I) and diabetics + insulin + glucose (D + I + G). All experimental groups showed a linear relationship between the TRP of P and G. The regression equation for C is significantly different (F = 40.1, P < 0.001) from that of D animals. The slope value measure the number of mumoles of P per mumol of G reabsorbed. For C and D rats, the ratio P:G approximates 1:4 and 1:20, respectively. The increase in P:G ratios represents the competition between both substrates for tubular resorption. Glycemias up to 11 mM (C and D + I) exist concurrent with the P:G ratio 1:4 Glycemias above 25 mM (D, C + G and D + I + G) produce a P:G ratio of 1:20. Fractional excretion of P (FEP) increased significantly in untreated, chronically diabetic rats (0.47 +/- 0.12 vs controls = 0.05 +/- 0.01, P < 0.001). After a single intramuscular injection of insulin, the FEP decreased as a function of insulin levels. To normalize the FEP of diabetic rats in short-term experiments, insulin had to be administered in doses that produce plasma insulin levels 25 times greater than normal. The general information afforded by the present experiments shows that in untreated, chronically diabetic rats, insulin deficit plays an indirect role. The absence of PTH enhances the effect of hyperglycemia. The latter and the concurrent tubular overload of glucose are the cause of hyperphosphaturia in these animals.
The Ca metabolism of pancreatectomized (PX) rats was investigated three months after surgery. Most PX animals were in negative Ca balance because of increased endogenous fecal Ca excretion and reduced true Ca absorption. Significant increases were also observed in bone Ca resorption rates, hydroxyproline excretion and size of osteocyte lacunae. Inverse correlations between the rates of bone Ca resorption and Ca balance were observed in the PX and control groups. Significantly, both correlations were found to fit the same function. It was concluded that parathyroid hormone secretion and its metabolic expression were not impaired by pancreatectomy. The coupling between bone Ca accretion and resorption was absent in PX animals: high resorption rates were found associated with normal or decreased accretion rates. These latter rates, in combination with the negative Ca balance, explain the reduction in the skeletal Ca mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.