The process of atomization is one in which a liquid jet or sheet is disintegrated by the kinetic energy of the liquid itself, or by exposure to high velocity air or gas, or as a result of mechanical energy applied externally. Combustion of liquid fuels in engines and industrial furnaces is dependent on effective atomization to increase the specific surface area of the fuel and thereby achieve high rate of mixing and evaporation. The pressure swirl atomizer is most common type atomizer used for combustion in gas turbine engines and industrial furnaces. The spray penetration is of prime importance for combustion designs. Over penetration of the spray leads to impingement of the fuel on walls of furnaces and combustors. On the other hand, if spray penetration is inadequate, fuel–air mixing is unsatisfactory. Optimum engine performance is obtained when the spray penetration is matched to the size and geometry of combustors. Methods for calculating penetration are therefore essential to sound engine design. Equally important are the spray cone angles and the drop size distribution in the sprays. An attempt is being made to experimentally investigate pressure swirl atomizer performance parameters such as spray cone angle, penetration length and drop size at different injection pressures ranging from 6 bar to 18 bar.
The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.
This paper aims to study the flow pattern in and around a bucket of a Traditional and a Hooped Pelton runner at single injector operation and illustrates different stages of jet interaction. High speed photography is used to study the flow pattern, keeping the camera in different positions relative to the jet and to the bucket. It is concluded from the results that the flow visualization study, provides exceptional observations with an absolute frame of reference to mark the bucket duty period of a single-jet Pelton runner. The small scale models display erosion damages at the bucket lips, this indicated that the high pressure occur in the early stage of interaction. This fact is substantiated by the present flow visualization studies for the first time. The uncertainty of the free surface outflow within the Pelton turbine bucket establishes good documentation. The results are helpful to know the interaction between the jet and bucket of Pelton turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.