Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms of (q x ) 2 /h, (q y ) 2 /h, and (q x q y )/h in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicitypreserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.
A stochastic Galerkin formulation for a stochastic system of balanced or conservation laws may fail to preserve hyperbolicity of the original system. In this work, we develop hyperbolicitypreserving stochastic Galerkin formulation for the one-dimensional shallow water equations by carefully selecting the polynomial chaos expansion of the nonlinear q 2 /h term in terms of the polynomial chaos expansions of the conserved variables. In addition, in an arbitrary finite stochastic dimension, we establish a sufficient condition to guarantee hyperbolicity of the stochastic Galerkin system through a finite number of conditions at stochastic quadrature points. Further, we develop a well-balanced central-upwind scheme for the stochastic shallow water model and derive the associated hyperbolicty-preserving CFL-type condition. The performance of the developed method is illustrated on a number of challenging numerical tests.
Approximating a function with a finite series, e.g., involving polynomials or trigonometric functions, is a critical tool in computing and data analysis. The construction of such approximations via now-standard approaches like least squares or compressive sampling does not ensure that the approximation adheres to certain convex linear structural constraints, such as positivity or monotonicity. Existing approaches that ensure such structure are norm-dissipative and this can have a deleterious impact when applying these approaches, e.g., when numerical solving partial differential equations. We present a new framework that enforces via optimization such structure on approximations and is simultaneously norm-preserving. This results in a conceptually simple convex optimization problem on the sphere, but the feasible set for such problems can be very complex. We establish well-posedness of the optimization problem through results on spherical convexity and design several spherical-projection-based algorithms to numerically compute the solution. Finally, we demonstrate the effectiveness of this approach through several numerical examples.
Approximating a function with a finite series, e.g., involving polynomials or trigonometric functions, is a critical tool in computing and data analysis. The construction of such approximations via now-standard approaches like least squares or compressive sampling does not ensure that the approximation adheres to certain convex linear structural constraints, such as positivity or monotonicity. Existing approaches that ensure such structure are norm-dissipative and this can have a deleterious impact when applying these approaches, e.g., when numerical solving partial differential equations. We present a new framework that enforces via optimization such structure on approximations and is simultaneously norm-preserving. This results in a conceptually simple convex optimization problem on the sphere, but the feasible set for such problems can be very complex. We establish well-posedness of the optimization problem through results on spherical convexity and design several spherical-projection-based algorithms to numerically compute the solution. Finally, we demonstrate the effectiveness of this approach through several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.