The recurrence of breast cancer (BC) is a serious therapeutic problem, and the risk factors for recurrence urgently need to be identified. In this study, we examined the functional pathways in tumor and normal tissues to more comprehensively identify biomarkers for the risk of BC recurrence. We collected tumor and normal tissue gene expression profiles of recurrent BC patients and non-recurrent BC patients from the TCGA database.We derived an expression interval (mean ± 1.96SD) based on non-recurrent patients rather than a single value, such as a mean or median. If the expression of a gene was significantly different from its normal expression interval, it was considered a differentially expressed gene. Eight pathways that significantly distinguished recurrent and non-recurrent BC patients were obtained based on 65% accuracy, and these pathways were all associated with the immune response and sensitivity to drugs. The genes in these eight pathways were also used to analyze survival, and the significance level reached 0.003 in an independent dataset (p = 0.02 in tumor and p = 0.03 in normal tissue). Our results reveal that the integration of tumor and normal tissue functional analyses can comprehensively enhance the understanding of BC prognosis.
Idiosyncratic adverse drug reactions are drug reactions that occur rarely and unpredictably among the population. These reactions often occur after a drug is marketed, which means that they are strongly related to the genotype of the population. The prediction of such adverse reactions is a major challenge because of the lack of appropriate test models during the drug development process. In this study, we chose withdrawn drugs because the reasons why they were withdrawn and from which countries or regions is easily obtained. We selected Dilevalol and its chiral drug (Labetalol) as the investigatory drugs, as they have been withdrawn from a European market (Britain) because of serious hepatotoxicity. First, we searched for and obtained the Dilevalol-induced- liver-injury related protein, multidrug resistance protein 1 (MDR1), from the Comparative Toxicogenomics Database (CTD). Then, we searched and extracted 477 non-synonymous single nucleotide polymorphisms (nsSNP) on MDR1 in the dbSNP database. Second, we used the VarMod tool to predict the functional changes of MDR1 induced by these nsSNPs, from which we extracted the nsSNPs that significantly change the functions of this protein. Third, we built the three-dimensional structures of those variant proteins and used AutoDock to perform a docking study, choosing the best model to determine the sites of nsSNPs. Finally, we used the data from the 1000 Genomes Project to verify the dominant population distribution of the risk SNP. We applied the same strategy to the post-marketing drug-induced liver injury drugs to further test the feasibility of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.