The interface region between Ga-face n-type GaN and Al2O3 dielectric (achieved via atomic-layer deposition or ALD) is investigated by X-ray photoelectron spectroscopy (XPS). An increase in the Ga-O to Ga-N bond intensity ratio following Al2O3 deposition implies that the growth of an interfacial gallium sub-oxide (GaOx) layer occurred during the ALD process. This finding may be ascribed to GaN oxidation, which may still happen following the reduction of a thin native GaOx by trimethylaluminum (TMA) in the initial TMA-only cycles. The valence band offset between GaN and Al2O3, obtained using both core-level and valence band spectra, is found to vary with the thickness of the deposited Al2O3. This observation may be explained by an upward energy band bending at the GaN surface (due to the spontaneous polarization induced negative bound charge on the Ga-face GaN) and the intrinsic limitation of the XPS method for band offset determination.
Nanoscale conducting filament, which forms the basis of the HfO2 resistive memory, is shown to exhibit a “negative photoconductivity” behavior, in that, electrical conduction through it can be disrupted upon white-light illumination. This behavior should be contrasted against the positive photoconductivity behavior commonly exhibited by oxides or perovskites having narrower bandgaps. The negative photoconductivity effect may be explained in terms of a photon-induced excitation of surrounding oxygen ions, which leads to migration and subsequent recombination with vacancies in the conducting filament. The finding suggests possible electrical-cum-optical applications for HfO2-based devices, whose functionality is limited to-date by electrical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.