Abstract. The theory of endomorphism rings of algebraic structures allows, in a natural way, a systematic approach based on the notion of entropy borrowed from dynamical systems. Here we study the algebraic entropy of the endomorphisms of Abelian groups, introduced in 1965 by Adler, Konheim and McAndrew. The so-called Addition Theorem is proved; this expresses the algebraic entropy of an endomorphism φ of a torsion group as the sum of the algebraic entropies of the restriction to a φ-invariant subgroup and of the endomorphism induced on the quotient group. Particular attention is paid to endomorphisms with zero algebraic entropy as well as to groups all of whose endomorphisms have zero algebraic entropy. The significance of this class arises from the fact that any group not in this class can be shown to have endomorphisms of infinite algebraic entropy, and we also investigate such groups. A uniqueness theorem for the algebraic entropy of endomorphisms of torsion Abelian groups is proved.
We introduce the algebraic entropy for endomorphisms of arbitrary abelian groups, appropriately modifying existing notions of entropy. The basic properties of the algebraic entropy are given, as well as various examples. The main result of this paper is the Addition Theorem showing that the algebraic entropy is additive in appropriate sense with respect to invariant subgroups. We give several applications of the Addition Theorem, among them the Uniqueness Theorem for the algebraic entropy in the category of all abelian groups and their endomorphisms. Furthermore, we point out the delicate connection of the algebraic entropy with the Mahler measure and Lehmer Problem in Number Theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.