The fatigue and fracture for bladed and integrally bladed rotors (IBR) of aircraft engine compressors has been studied. For IBRs, a new distinct finite element technique was developed to model crack propagation under combined low cycle and high cycle fatigue loading. The crack trajectory, aspect ratio, and shape resulting from the method agreed very well with airfoils which fractured in service. The technique can be extended on other compressor disk applications. For bladed rotors limited by fretting fatigue, a unique fracture mechanics based methodology was developed for obtaining an evolved coefficient of friction (COF) resulting from fretting motion between the fan blade and hub. The predicted nucleation location, nucleation life, crack trajectory, shape and propagation life agreed well with the fractured components. The study confirms that the fretting-specific modified Smith-Watson-Topper (SWT) parameter more accurately predicts the nucleation location and life of the crack compared to the plain fatigue SWT parameter.
The fatigue and fracture for bladed and integrally bladed rotors (IBR) of aircraft engine compressors has been studied. For IBRs, a new distinct finite element technique was developed to model crack propagation under combined low cycle and high cycle fatigue loading. The crack trajectory, aspect ratio, and shape resulting from the method agreed very well with airfoils which fractured in service. The technique can be extended on other compressor disk applications. For bladed rotors limited by fretting fatigue, a unique fracture mechanics based methodology was developed for obtaining an evolved coefficient of friction (COF) resulting from fretting motion between the fan blade and hub. The predicted nucleation location, nucleation life, crack trajectory, shape and propagation life agreed well with the fractured components. The study confirms that the fretting-specific modified Smith-Watson-Topper (SWT) parameter more accurately predicts the nucleation location and life of the crack compared to the plain fatigue SWT parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.