The flavonoid quercetin is purported to have potent antioxidant and anti-inflammatory properties. This study examined if quercetin supplementation attenuates indicators of exercise-induced muscle damage in a double-blind laboratory study. Thirty healthy subjects were randomized to quercetin (QU) or placebo (PL) supplementation and performed 2 separate sessions of 24 eccentric contractions of the elbow flexors. Muscle strength, soreness, resting arm angle, upper arm swelling, serum creatine kinase (CK) activity, plasma quercetin (PQ), interleukin-6 (IL-6), and C-reactive protein (CRP) were assessed before and for 5 d after exercise. Subjects then ingested nutrition bars containing 1,000 mg/d QU or PL for 7 d before and 5 d after the second exercise session, using the opposite arm. PQ reached 202 ± 52 ng/ml after 7 d of supplementation and remained elevated during the 5-d postexercise recovery period (p < .05). Subjects experienced strength loss (peak = 47%), muscle soreness (peak = 39 ± 6 mm), reduced arm angle (-7° ± 1°), CK elevations (peak = 3,307 ± 1,481 U/L), and arm swelling (peak = 11 ± 2 mm; p < .0001), indicating muscle damage and inflammation; however, differences between treatments were not detected. Eccentric exercise did not alter plasma IL-6 (peak = 1.9 pg/ml) or CRP (peak = 1.6 mg/L) relative to baseline or by treatment. QU supplementation had no effect on markers of muscle damage or inflammation after eccentric exercise of the elbow flexors.
Quercetin is a naturally occurring flavonoid with anti-oxidant and anti-inflammatory properties. The effect of quercetin supplementation on maximal oxygen uptake (VO(2max)) is unknown. The purpose of this investigation was to test the effects of quercetin supplementation on VO(2max) in untrained, sedentary individuals. After baseline treadmill VO(2max) testing, 11 participants (5 males, 6 females) ingested either placebo or quercetin-supplemented (1000 mg x day(-1)) food bars in a randomized, double-blind, counterbalanced, crossover research design. The participants ingested food bars for six consecutive mornings (5 days). On the sixth morning, participants underwent repeat VO(2max) testing. After a 22 day wash-out, the participants repeated baseline VO(2max) testing, daily consumption of the opposite food bars, and post-supplementation VO(2max) testing. The condition x time interaction for VO(2max) was non-significant when expressed in absolute (litres x min(-1); P = 0.929) and relative (ml x kg(-1) x min(-1); P = 0.778) terms. These findings were similar when taking sex into account (P > 0.05). The mean difference in VO(2max) change from pre to post between groups (quercetin vs. placebo) was 0.139 ml x kg(-1) x min(-1) (P = 0.780). Other physiological measures also were similar between conditions (P > 0.05). In conclusion, 5 days of quercetin supplementation did not influence VO(2max) or related variables in sedentary men and women.
Abstract. The study investigated the formulation effects of laurocapram and iminosulfurane derived penetration modifiers on human stratum corneum using thermal and spectral analyses. Firstly, formulations of penetration modifiers were assessed as enhancers/retardants using the model permeant, diethyl-m-toluamide followed by investigation of their mechanisms of action using differential scanning calorimetry (DSC) and attenuated total reflectance Fourier-transform infra-red spectroscopy. The penetration modifiers investigated were laurocapram, 3-dodecanoyloxazolidin-2-one (N-0915), S,Sdimethyl-N-(4-bromobenzoyl) iminosulfurane (DMBIS), S,S-dimethyl-N-(2-methoxycarbonylbenzenesulfonyl) iminosulfurane (DMMCBI) and tert-butyl 1-dodecyl-2-oxoazepan-3-yl-carbamate (TBDOC) that were formulated in either water, propylene glycol (PG), ethanol or polyethylene glycol 400 (PEG 400). The results explain the mechanism for the first time why an enhancer can become a retardant or vice versa depending upon the vehicle in which it is applied to the skin. DSC indicated that penetration modifier formulations enhanced permeation of active mainly by disruption and fluidization of the stratum corneum lipid bilayers while IR data indicated characteristic blue shifts with decreases in peak intensity. On the other hand, DSC of penetration modifier formulations showing retardation depicted elevated T m2 with a strengthening of lipid-protein complex while IR results indicated formation of multiple peaks around 1,738 cm −1 transition in stratum corneum spectra suggesting retardation may be caused by organization of SC lipids by increased H-bonding.
The current study describes for the first time, comprehensive evaluation of quercetin PK in humans from quercetin fortified oral food products at doses commonly used for quercetin supplementation. Owing to quercetin's potent antioxidant and anti-inflammatory actions, quercetin is widely being used as a nutritional supplement. In order to maximize the bioavailability of quercetin for its use in efficacy studies, it is important to determine its ideal oral carrier system and route for its delivery. The current research unveils vital information about quercetin supplementation to the international community, especially to soldiers, athletes, and the dietary supplement industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.