Executive function includes the core components of working memory, inhibitory control, and cognitive flexibility. A wealth of studies demonstrate that working memory and inhibitory control improve following a single bout of exercise; however, a paucity-and equivocal-body of work has demonstrated a similar benefit for cognitive flexibility. Cognitive flexibility underlies switching between different attentional-and motor-related goals, and a potential limitation of previous work examining this component in an exercise context is that they included tasks involving non-executive processes (i.e., numerosity, parity, and letter judgments). To address this issue, Experiment 1 employed a 20-min bout of aerobic exercise and examined pre-and immediate post-exercise cognitive flexibility via stimulus-driven (SD) and minimally delayed (MD) saccades ordered in an AABB task-switching paradigm. Stimulus-driven saccades are a standard task requiring a response at target onset, whereas MD saccades are a non-standard and top-down task requiring a response only after the target is extinguished. Work has shown that RTs for a SD saccade preceded by a MD saccade are longer than when a SD saccade is preceded by its same task-type, whereas the converse switch does not influence performance (i.e., the unidirectional switch-cost). Experiment 1 yielded a 28 ms and 8 ms unidirectional switch-cost pre-and post-exercise, respectively (ps < 0.001); however, the magnitude of the switch-cost was reduced post-exercise (p = 0.005). Experiment 2 involved a non-exercise control condition and yielded a reliable and equivalent magnitude unidirectional switch-cost at a pre-(28 ms) and post-break (26 ms) assessment (ps < 0.001). Accordingly, a single-bout of exercise improved taskswitching efficiency and thereby provides convergent evidence that exercise provides a global benefit to the core components of executive function.
Despite the tremendous amount of research fronting the use of touch gestures as a mechanism of continuous authentication on smart phones, very little research has been conducted to evaluate how these systems could behave if attacked by sophisticated adversaries. In this article, we present two Lego-driven robotic attacks on touch-based authentication: a population statistics-driven attack and a user-tailored attack. The population statistics-driven attack is based on patterns gleaned from a large population of users, whereas the user-tailored attack is launched based on samples stolen from the victim. Both attacks are launched by a Lego robot that is trained on how to swipe on the touch screen. Using seven verification algorithms and a large dataset of users, we show that the attacks cause the system's mean false acceptance rate (FAR) to increase by up to fivefold relative to the mean FAR seen under the standard zero-effort impostor attack. The article demonstrates the threat that robots pose to touch-based authentication and provides compelling evidence as to why the zero-effort attack should cease to be used as the benchmark for touchbased authentication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.