Flexible Learning Environments (FLEs) arose as enablers for implementation of student-centric pedagogical approaches. Interior design is the key to the success of FLEs, providing the physical infrastructure needed for students to engage on several learning activities, from individual to group work, which take place in a variety of zones ranging from low to high energy. Therefore, a harmonious synergy between the interior design and subsequent Indoor Environmental Quality (IEQ) performance of FLEs’ physical configuration and learning activities is needed. The objective of this paper is to systematically review (in accordance with the PRISMA method) existing literature related to FLEs within primary school settings, typically catering to children aged 5–12 years old, to understand the body of work investigating the design and performance of FLEs over the last decade (2010–2020). Key findings suggest that the proximity and acoustic and visual permeability of zones found in FLEs may give rise to inadequate IEQ conditions delivered to students. In addition, it could be inferred from the results of the literature review that interior design and IEQ have not been sufficiently investigated in an integrated manner.
The existing building stock is recognised as a major contributor to total energy consumption and related carbon emissions around the globe. There is increased attention on the retrofit of existing building stock, especially residential buildings, as a way of curbing energy consumption and carbon emissions. Within this context, human nature connectedness (HNC) has the potential of further amplifying the benefits of sustainable buildings both from an energy conservation practice and tangible improvements to users’ satisfaction, health, and wellbeing. This study attempts to show a case study of the potential of using HNC through the adoption of biophilic design principles to improve a residential building performance. A terrace house located in Sydney, NSW, was used as a case study and proposed retrofit scenarios were simulated with DesignBuilder® and Rhinoceros/Grasshopper with a view of improved daylighting, thermal comfort, and energy consumption. The building performance is improved in terms of daylighting, thermal comfort, and reduced energy consumption, additionally enhancing HNC.
The current +−0.5 PMV (Predicted Mean Vote) targets adopted by NABERS (National Australian Built Environment Rating System) is the practical range deemed acceptable for 90% acceptability for commercial buildings in Australia, however thermal comfort satisfaction scores measured in office buildings still show high percentages of dissatisfied occupants. This paper aims to demonstrate the potential of curbing energy consumption from commercial buildings in Australia by increasing summer temperature set-points. A 10-year NABERS dataset, along with objective and subjective thermal comfort and air quality data from NABERS-certified offices are investigated in this study. Furthermore, different simulation scenarios are tested to investigate the discomfort hours and energy consumption for various summer temperature setpoints. Result analysis shows that occupants’ satisfaction in NABERS-certified buildings was not within the 90% satisfaction, with being too cold/hot as the main source of dissatisfaction. Objective measurements also showed temperature was out of recommended range for several datapoints. Simulation results indicate that, within the average range of 21–24.9 °C, there is not a significant difference in discomfort hours that could drive the selection of one temperature set-point over the other. Challenging the current practices, results suggest that a cooling set point temperature on the upper limit of the range indicated by the Australian standard AS 1837–1976 may minimize the energy consumption without significantly increasing discomfort, or even increasing the perceived satisfaction with the indoor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.