This work examines how a forced-attention technique can be applied to the task of Video Activity Recognition. The Look&Learn system performs early fusion of critical detected areas of attention with the original raw image data for training a system for video activity recognition, specifically the task of Squat "Quality" Detection. Look & Learn is compared to previous work, USquat, and achieved a 98.96% accuracy on average compared to the USquat system which achieved 93.75% accuracy demonstrating the improvement that can be gained by Look&Learn's forced-attention technique. Look&Learn is deployed in an Android Application for proof of concept and results presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.