With the rapid development of the microelectronics industry, many efforts have been made to improve glass-ceramics’ sinterability, thermal conductivity, and dielectric properties, which are essential components of electronic materials. In this study, low-alkali borosilicate glass-ceramics with PVA addition and glass-BN composites were prepared and successfully sintered at 770 °C. The phase composition, density, microstructure, thermal conductivity, and dielectric constant were investigated. It was shown that PVA addition contributes to the densification process of glass-ceramics (~88% relative density, with closed/open pores in the microstructure) and improves the thermal conductivity of glass material from 1.489 to 2.453 W/K.m. On the other hand, increasing BN addition improves microstructures by decreasing porosities and thus increasing relative densities. A glass-12 wt. % BN composite sample exhibited almost full densification after sintering and presented apparent and open pores of 2.6 and 0.08%, respectively. A high thermal conductivity value of 3.955 W/K.m and a low dielectric constant of 3.00 (at 5 MHz) were observed in this material. Overall, the resulting glass-ceramic samples showed dielectric constants in the range of 2.40–4.43, providing a potential candidate for various electronic applications.
Various glass-ceramics are widely used or considered for use as components of microelectronic materials due to their promising properties. In this study, borosilicate glass was prepared using the powder metallurgical route and then mixed with different amounts of Al2O3 and ZrO2 filler materials. Glass-ceramics are produced by high-energy ball milling and conventional sintering process under Ar or air. In this study, the effects of different filler materials and different atmospheres on the microstructural, thermal and dielectric properties were investigated. The data showed that ZrO2 filler material led to better results than Al2O3 under identical working conditions and similar composite structures. ZrO2 filler material significantly enhanced the densification process of glass-ceramics (100% relative density) and led to a thermal conductivity of 2.904 W/K.m, a dielectric constant of 3.97 (at 5 MHz) and a dielectric loss of 0.0340 (at 5 MHz) for the glass with 30 wt.% ZrO2 sample. This paper suggests that prepared borosilicate glass-ceramics have strong sinterability, high thermal conductivity, and low dielectric constants, making them promising candidates for microelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.