Laser cladding, which is surface modification technology, is based on melting with a laser beam by spraying powder on the base metal and generated by depositing the layers. In this study, the Metco 42C martensitic stainless steel powder material was cladded on the FGS600-3A ductile cast iron used in sheet metal forming molds. The effect of energy input on porosity and microhardness was investigated. The digital image processing method was used for porosity analysis. The energy input had a significant effect on the pore formation. The lower energy input (1.1 kW laser power, 14 mm/s scanning speed) resulted in lower porosity. The cladding thickness varied depending on the scanning speed parameter due to affecting powder efficiency, high thickness was obtained at 6 mm/s low scanning speed. In the upper layer of the cladding, high hardness values were achieved due to the martensitic phase formation. The bottom layers of cladding had lower hardness values because of the tempering of the hard martensitic phases by subsequent cladding processes. Significant increase in hardness at cladding zone was attributed to carbon transfer from the base metal. This remarkable increase in hardness was much higher at lowest energy input (1.1 kW laser power and 14 mm/s scanning speed). However, it is clear that this will increase the risk of crack formation because of brittleness. On the other hand, at the higher energy input, this significant increase in hardness is at a lower level due to rest-austenite formation and excessive annealing with subsequent cladding processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.