Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Tuberculosis (TB) is a chronic inflammatory disease that is often associated with alterations in systemic and cellular metabolism that resolves following successful antimicrobial drug treatment. We hypothesized that altered systemic glucose metabolism as a consequence of Mycobacterium tuberculosis (Mtb) infection, contributes to TB pathogenesis, and when normalized with anti-glycemic drugs would improve clinical outcomes. To test this hypothesis, guinea pigs were treated daily with the anti-diabetic drug metformin starting 4 weeks prior or concurrent with aerosol exposure to the H37Rv strain of Mtb. In the chronic stages of infection, Mtb infected metformin-treated animals had restored systemic insulin sensitivity but remained glucose intolerant as determined by oral glucose tolerance testing. Despite persistent glucose intolerance, metformin-treated guinea pigs had a 2.8-fold reduction in lung lesion burden and a 0.7 log decrease in CFUs. An alternative hypothesis that metformin treatment improved clinical disease by having a direct effect on immune cell energy metabolism was tested using extracellular flux analysis and flow cytometry. The proinflammatory immune response to Mtb infection in untreated guinea pigs was associated with a marked increase in energy metabolism (glycolysis and mitochondrial respiration) of peripheral blood mononuclear cells (PBMCs), which was normalized in metformin-treated guinea pigs. Moreover, both CD4+ and CD8+ T lymphocytes from Mtb infected, metformin treated animals maintained a more normal mitochondrial membrane potential while those isolated from untreated animals had persistent mitochondrial hyperpolarization. These data suggest that metformin promotes natural host resistance to Mtb infection by maintaining immune cell metabolic homeostasis and function during the chronic stages of active TB disease.
Veterinarians are established public health professionals, committing to promote public health when they take their veterinary oath. The issue of climate change and its impact on planetary health is vital to public health, and therefore, it is critical that climate change is regarded as within the veterinary scope of practice. However, climate change is a multi-faceted issue which requires interdisciplinary collaboration and integrated stakeholder involvement in order to establish effective solutions and impactful policies. As a result, in this perspective, we discuss how policy is critical to support veterinarians in the climate change space and argue that more explicit support is needed for veterinarians to take an active role in climate change adaption, resilience, and mitigation. We address the discrepancies between the human health and veterinary professions with respect to providing policy support and capacity for practitioners to be stewards to promote planetary health and shed light on the lack of veterinary capacity in this area. We stress that veterinary professional societies are well equipped to bolster their policies, expand education for veterinary professionals and students in policy and advocacy, and establish calls to action to address climate change and planetary health issues. Ultimately, as public health professionals, veterinarians are uniquely poised to be contributors to climate change solutions and they should be actively involved in policy decision-making and empowered to take active roles in interdisciplinary conversations surrounding this important issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.