The highly conserved and ubiquitously expressed 14‐3‐3 proteins regulate differentiation, cell cycle progression and apoptosis by binding intracellular phosphoproteins involved in signal transduction. By screening in vitro translated cDNA pools for the ability to bind 14‐3‐3, we identified a novel transcriptional co‐activator, TAZ (transcriptional co‐activator with PDZ‐binding motif) as a 14‐3‐3‐binding molecule. TAZ shares homology with Yes‐associated protein (YAP), contains a WW domain and functions as a transcriptional co‐activator by binding to the PPXY motif present on transcription factors. 14‐3‐3 binding requires TAZ phosphorylation on a single serine residue, resulting in the inhibition of TAZ transcriptional co‐activation through 14‐3‐3‐mediated nuclear export. The C‐terminus of TAZ contains a highly conserved PDZ‐binding motif that localizes TAZ into discrete nuclear foci and is essential for TAZ‐stimulated gene transcription. TAZ uses this same motif to bind the PDZ domain‐containing protein NHERF‐2, a molecule that tethers plasma membrane ion channels and receptors to cytoskeletal actin. TAZ may link events at the plasma membrane and cytoskeleton to nuclear transcription in a manner that can be regulated by 14‐3‐3.
Forkhead-associated (FHA) domains are a class of ubiquitous signaling modules that appear to function through interactions with phosphorylated target molecules. We have used oriented peptide library screening to determine the optimal phosphopeptide binding motifs recognized by several FHA domains, including those within a number of DNA damage checkpoint kinases, and determined the X-ray structure of Rad53p-FHA1, in complex with a phospho-threonine peptide, at 1.6 A resolution. The structure reveals a striking similarity to the MH2 domains of Smad tumor suppressor proteins and reveals a mode of peptide binding that differs from SH2, 14-3-3, or PTB domain complexes. These results have important implications for DNA damage signaling and CHK2-dependent tumor suppression, and they indicate that FHA domains play important and unsuspected roles in S/T kinase signaling mechanisms in prokaryotes and eukaryotes.
14-3-3 proteins regulate the cell cycle and prevent apoptosis by controlling the nuclear and cytoplasmic distribution of signaling molecules with which they interact. Although the majority of 14-3-3 molecules are present in the cytoplasm, we show here that in the absence of bound ligands 14-3-3 homes to the nucleus. We demonstrate that phosphorylation of one important 14-3-3 binding molecule, the transcription factor FKHRL1, at the 14-3-3 binding site occurs within the nucleus immediately before FKHRL1 relocalization to the cytoplasm. We show that the leucine-rich region within the COOH-terminal α-helix of 14-3-3, which had been proposed to function as a nuclear export signal (NES), instead functions globally in ligand binding and does not directly mediate nuclear transport. Efficient nuclear export of FKHRL1 requires both intrinsic NES sequences within FKHRL1 and phosphorylation/14-3-3 binding. Finally, we present evidence that phosphorylation/14-3-3 binding may also prevent FKHRL1 nuclear reimport. These results indicate that 14-3-3 can mediate the relocalization of nuclear ligands by several mechanisms that ensure complete sequestration of the bound 14-3-3 complex in the cytoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.