Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.
In the current era, data is growing exponentially due to advancements in smart devices. Data scientists apply a variety of learning-based techniques to identify underlying patterns in the medical data to address various health-related issues. In this context, automated disease detection has now become a central concern in medical science. Such approaches can reduce the mortality rate through accurate and timely diagnosis. COVID-19 is a modern virus that has spread all over the world and is affecting millions of people. Many countries are facing a shortage of testing kits, vaccines, and other resources due to significant and rapid growth in cases. In order to accelerate the testing process, scientists around the world have sought to create novel methods for the detection of the virus. In this paper, we propose a hybrid deep learning model based on a convolutional neural network (CNN) and gated recurrent unit (GRU) to diagnose the virus from chest X-rays (CXRs). In the proposed model, a CNN is used to extract features, and a GRU is used as a classifier. The model has been trained on 424 CXR images with 3 classes Pneumonia, and Normal). The proposed model achieves encouraging results of 0.96, 0.96, and 0.95 in terms of precision, recall, and f1-score, respectively. These findings indicate how deep learning can significantly contribute to the early detection of COVID-19 in patients through the analysis of X-ray scans. Such indications can pave the way to mitigate the impact of the disease. We believe that this model can be an effective tool for medical practitioners for early diagnosis.
Currently, many deep learning models are being used to classify COVID‐19 and normal cases from chest X‐rays. However, the available data (X‐rays) for COVID‐19 is limited to train a robust deep‐learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high‐dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep‐convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID‐19). To validate whether the generated images are accurate, we used the k‐mean clustering technique with three clusters (Normal, Pneumonia, and COVID‐19). We only selected the X‐ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X‐rays, we used the Grad‐CAM technique to visualize the underlying pattern, which leads the network to its final decision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.