Articular cartilage (AC) is a flexible and soft yet stiff tissue that can be visualized and interpreted using magnetic resonance (MR) imaging for the assessment of knee osteoarthritis. Segmentation of AC from MR images is a challenging task that has been investigated widely. The development of computational methods to segment AC is highly dependent on various image parameters, quality, tissue structure, and acquisition protocol involved. This review focuses on the challenges faced during AC segmentation from MR images followed by the discussion on computational methods for semi/fully automated approaches, whilst performances parameters and their significances have also been explored. Furthermore, hybrid approaches used to segment AC are reviewed. This review indicates that despite the challenges in AC segmentation, the semi-automated method utilizing advanced computational methods such as active contour and clustering have shown significant accuracy. Fully automated AC segmentation methods have obtained moderate accuracy and show suitability for extensive clinical studies whilst advanced methods are being investigated that have led to achieving significantly better sensitivity. In conclusion, this review indicates that research in AC segmentation from MR images is moving towards the development of fully automated methods using advanced multi-level, multi-data, and multi-approach techniques to provide assistance in clinical studies.
Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.