Background Scavenger receptor class B type 1 (SCARB1) plays an important role in high-density lipoprotein cholesterol (HDL-C) metabolism in selective cholesteryl ester uptake and for free cholesterol cellular efflux. Methods and Results This study aims to identify common (minor allele frequency (MAF) ≥5%) and low-frequency/rare (MAF <5%) variants, using resequencing all 13 exons and exon-intron boundaries of SCARB1 in 95 individuals with extreme HDL-C levels selected from a population-based sample of 623 US non-Hispanic whites. The sequencing step identified 44 variants, of which 11 were novel with MAF <1%. Seventy-six variants (40 sequence variants, 32 common HapMap tag single nucleotide polymorphisms, and 4 relevant variants) were selected for genotyping in the total sample of 623 subjects followed by association analyses with lipid traits. Seven variants were nominally associated with apolipoprotien B (apoB) (n = 4) or HDL-C (n = 3) (P <0.05). Three variants associated with apoB remained significant after controlling false discovery rate. The most significant association was observed between rs4765615 and apoB (P = 0.0059), while rs11057844 showed the strongest association with HDL-C (P = 0.0035). A set of 17 rare variants (MAF ≤1%) showed significant association with apoB (P = 0.0284). Haplotype analysis revealed 4 regions significantly associated with either apoB or HDL-C. Conclusions Our findings provide new information about the genetic role of SCARB1 in affecting plasma apoB levels in addition to its established role in HDL-C metabolism.
Genome-wide association studies have identified several loci associated with plasma lipid levels but those common variants together account only for a small proportion of the genetic variance of lipid traits. It has been hypothesized that the remaining heritability may partly be explained by rare variants with strong effect sizes. Here, we have comprehensively investigated the associations of both common and uncommon/rare variants in the lipoprotein lipase (LPL) gene in relation to plasma lipoprotein–lipid levels in African Blacks (ABs). For variant discovery purposes, the entire LPL gene and flanking regions were resequenced in 95 ABs with extreme high-density lipoprotein cholesterol (HDL-C) levels. A total of 308 variants were identified, of which 64 were novel. Selected common tagSNPs and uncommon/rare variants were genotyped in the entire sample (n=788), and 126 QC-passed variants were evaluated for their associations with lipoprotein–lipid levels by using single-site, haplotype and rare variant (SKAT-O) association analyses. We found eight not highly correlated (r2<0.40) signals (rs1801177:G>A, rs8176337:G>C, rs74304285:G>A, rs252:delA, rs316:C>A, rs329:A>G, rs12679834:T>C, and rs4921684:C>T) nominally (P<0.05) associated with lipid traits (HDL-C, LDL-C, ApoA1 or ApoB levels) in our sample. The most significant SNP, rs252:delA, represented a novel association observed with LDL-C (P=0.002) and ApoB (P=0.012). For TG and LDL-C, the haplotype analysis was more informative than the single-site analysis. The SKAT-O analysis revealed that the bin (group) containing 22 rare variants with MAF≤0.01 exhibited nominal association with TG (P=0.039) and LDL-C (P=0.027). Our study indicates that both common and uncommon/rare LPL variants/haplotypes may affect plasma lipoprotein–lipid levels in general African population.
Although common APOE genetic variation has a major influence on plasma LDL-cholesterol, its role in affecting HDL-cholesterol and triglycerides is not well established. Recent genome-wide association studies suggest that APOE also affects plasma variation in HDL-cholesterol and triglycerides. It is thus important to resequence the APOE gene to identify both common and uncommon variants that affect plasma lipid profile. Here, we have sequenced the APOE gene in 190 subjects with extreme HDL-cholesterol levels selected from two well-defined epidemiological samples of U.S. non-Hispanic Whites (NHWs) and African Blacks followed by genotyping of identified variants in the entire datasets (623 NHWs, 788 African Blacks) and association analyses with major lipid traits. We identified a total of 40 sequence variants, of which 10 are novel. A total of 32 variants, including common tagSNPs (≥5% frequency) and all uncommon variants (<5% frequency) were successfully genotyped and considered for genotype-phenotype associations. Other than the established associations of APOE*2 and APOE*4 with LDL-cholesterol, we have identified additional independent associations with LDL-cholesterol. We have also identified multiple associations of uncommon and common APOE variants with HDL-cholesterol and triglycerides. Our comprehensive sequencing and genotype-phenotype analyses indicate that APOE genetic variation impacts HDL-cholesterol and triglycerides in addition to affecting LDL-cholesterol.
Background Cholesteryl ester transfer protein (CETP) plays a crucial role in lipid metabolism. Associations of common CETP variants with variation in plasma lipid levels, and/or CETP mass/activity have been extensively studied and well-documented; however, the effects of uncommon/rare CETP variants on plasma lipid profile remain undefined. Hence, resequencing of the gene in extreme phenotypes and follow-up rare-variant association analyses are essential to fill this gap. Objective To identify common and uncommon/rare variants in the CETP gene by resequencing the entire gene and test the effects of both common and uncommon/rare CETP variants on plasma lipid traits in two genetically distinct populations. Methods and Results The entire CETP gene plus flanking regions were resequenced in 190 individuals comprising 95 non-Hispanic Whites (NHWs) and 95 African blacks with extreme HDL-C levels. A total of 279 sequence variants were identified, of which 25 were novel. Selected variants were genotyped in the entire samples of 623 NHWs and 788 African blacks and 184 QC-passed variants were tested in relation to plasma lipid traits by using gene-based, single-site, haplotype and rare variant association analyses (SKAT-O). Two novel and independent associations of rs1968905 and rs289740 with HDL-C were identified in African blacks. Using SKAT-O analysis, we also identified rare variants with minor allele frequency <0.01 to be associated with HDL-C in both NHWs (P=0.024) and African blacks (P=0.009). Conclusions Our results point out that in addition to the common CETP variants, rare genetic variants in the CETP gene also contribute to the phenotypic variation of HDL-C in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.