The radiolytic decomposition of the drug diclofenac (DCF), and in limited extent, also two other widely used drugs, ibuprofen and carbamazepine, was examined using liquid chromatography (LC) methods. The efficiency of DCF decomposition was examined in function of the absorbed dose of gamma radiation, and also in the presence of selected scavengers of radicals, which are commonly present in natural waters and wastes. Three different tests were employed for the monitoring of toxicity changes in the irradiated DCF solutions. The LC/mass spectrometry (MS) was used for the determination of products of DCF radiolysis. Using pulse-radiolysis method with the spectrophotometric detection, the rate constant values were determined for reactions of DCF with the main products of water radiolysis: hydroxyl radicals (1.24 ± 0.02) × 1010 M−1 s−1 and hydrated electrons (3.1 ± 0.2) × 109 M−1 s−1. Their values indicate that both oxidative and reductive processes in radiolytic decomposition of DCF can take place in irradiated diluted aqueous solutions of DCF. The possibility of decomposition of all examined analytes was investigated in samples of river water and hospital waste. Compared to the previous studies, the conducted measurements in real samples were carried out at the concentration levels, which are close to those reported earlier in environmental samples.Graphical abstractᅟ
A 2 4 factorial design was used to evaluate the quantitative adsorption of Hg(II) ions in an aqueous solution onto radiation crosslinked poly(acrylic acid/acrylamide) hydrogels. The influence on the binding ratio (r ) of variables such as pH, temperature, initial concentration of solution, and material was analyzed statistically using a suggested regression equation. The results demonstrate that the initial concentration of Hg(II) is the most significant parameter. A maximum Hg(II) ion uptake of 15.50 mg/g (with standard deviation, 0.20) was achieved at a high initial Hg(II) concentration (100 mg/L), low pH (2.5), and low temperature (15 • C) for both of radiation crosslinked poly(AAm-co-AAc) hydrogel samples in a significance level of 5 %.
The decomposition of the widely used organophosphorus pesticide parathion was carried out in aqueous solutions by the use of gamma-irradiation from a 60Co source or ozonation by means of an ozone generator, and by combined processes of ozonation and radiolysis. Factors affecting the parathion decomposition as well formation and decomposition of the main by-products, including irradiation dose, length of ozonation time, and presence of common scavengers, were investigated. The most efficient was found to be the gamma-irradiation process combined with a short ozonation period; about 1 kGy irradiation dose was sufficient to decompose the pesticide in 15 mg/L solutions. Chemical studies of the decomposition of parathion were accompanied by monitoring of toxicity changes of irradiated solutions with the Microtox test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.