Parallel and multiprocessing algorithms break down significant numerical problems into smaller subtasks, reducing the total computing time on multiprocessor and multicore computers. Parallel programming is well supported in proven programming languages such as C and Python, which are well suited to “heavy-duty” computational tasks. Historically, Python has been regarded as a strong supporter of parallel programming due to the global interpreter lock (GIL). However, times have changed. Parallel programming in Python is supported by the creation of a diverse set of libraries and packages. This review focused on Python libraries that support parallel processing and multiprocessing, intending to accelerate computation in various fields, including multimedia, attack detection, supercomputers, and genetic algorithms. Furthermore, we discussed some Python libraries that can be used for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.